Skip to main content

Advertisement

Log in

Direct Drug Targeting into Intracellular Compartments: Issues, Limitations, and Future Outlook

  • Topical Review
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Intracellular compartment drug delivery is a promising strategy for the treatment of diseases. By this way, medicines can delivered to particular intracellular compartments. This maximizes the therapeutic efficacy and safety of medicines, particularly of anticancer and antiviral drugs. Intracellular compartment drug delivery is either indirectly by targeting of cell nucleus as central compartment of the cell or directly through the targeting of compartments itself. Drugs or nanoshuttles labeled with compartment’s localization signal represent a smart tactic for subcellular compartment targeting. There are several boundaries prevent the arrival of shuttles to the specified intracellular compartments. These boundaries include selective permeability of biomembranes, efflux transporters, and lysosomes. The utilization of specific ligands during design of drug delivery nanoshuttles permits the targeting of specified intracellular compartment. Therefore drugs targeting could correct the diseases associated organelles. This review highlights the direct targeting of the medicines into subcellular compartment as a promising therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adjei IM, Sharma B, Labhasetwar V (2014) Nanoparticles: cellular uptake and cytotoxicity. Adv Exp Med Biol 811:73–91

    PubMed  Google Scholar 

  • Aresh W, Liu Y, Sine J, Thayer D, Puri A, Huang Y, Nieh MP (2016) The morphology of self-assembled lipid-based nanoparticles affects their uptake by cancer cells. J Biomed Nanotechnol 12(10):1852–1863. https://doi.org/10.1166/jbn.2016.2292

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Yoo J-W, Kolhar P, Wakankar A, Gokarn YR, Mitragotri S (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci 110:3270–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas S, Torchilin VP (2014) Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 66:26–41

    CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    CAS  PubMed  Google Scholar 

  • Cao B, Mao X (2011) The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery. Am J Blood Res 1:46–56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandrawati R, Caruso F (2012) Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 28:13798–13807

    CAS  PubMed  Google Scholar 

  • Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    CAS  PubMed  Google Scholar 

  • Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78:857–902

    CAS  PubMed  Google Scholar 

  • Fang RH, Jiang Y, Fang JC, Zhang L (2017) Cell membrane-derived nanomaterials for biomedical applications. Biomaterials 128:69–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Google Scholar 

  • Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C et al (2016) The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J Cell Mol Med 20:1392–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu ZC, Enenkel C (2014) Proteasome assembly. Cell Mol Life Sci 71:4729–4745

    CAS  PubMed  Google Scholar 

  • Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296

    PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Harisa GI, Badran MM, Alanazi FK, Attia SM (2017) Crosstalk of nanosystems induced extracellular vesicles as promising tools in biomedical applications. J Membr Biol 250:605–616

    CAS  PubMed  Google Scholar 

  • Harisa GI, Badran MM, Alanazi FK, Attia SM (2018) An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artif Cells Nanomed Biotechnol 46:669–679

    CAS  PubMed  Google Scholar 

  • Hatakeyama H, Ito E, Akita H, Oishi M, Nagasaki Y, Futaki S et al (2009) A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo. J Control Release 139:127–132

    CAS  PubMed  Google Scholar 

  • Healy SJM, Gorman AM, Mousavi-Shafaei P, Gupta S, Samali A (2009) Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur J Pharmacol 625:234–246

    CAS  PubMed  Google Scholar 

  • Heller A, Brockhoff G, Goepferich A (2012) Targeting drugs to mitochondria. Eur J Pharm Biopharm 82:1–18

    CAS  PubMed  Google Scholar 

  • Hild WA, Breunig M, Goepferich A (2008) Quantum dots—nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168

    CAS  PubMed  Google Scholar 

  • Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO (2008) Mitochondria-penetrating peptides. Chem Biol 15:375–382

    CAS  PubMed  Google Scholar 

  • Indran IR, Tufo G, Pervaiz S, Brenner C (2011) Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim Biophys Acta 1807:735–745

    CAS  PubMed  Google Scholar 

  • Ivanov AI (2014) Pharmacological inhibitors of exocytosis and endocytosis: novel bullets for old targets. In: Ivanov AI (ed) Exocytosis and endocytosis. Springer, New York, pp 3–18

    Google Scholar 

  • Jhaveri A, Torchilin V (2016) Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 13:49–70

    CAS  PubMed  Google Scholar 

  • Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846:75–87

    CAS  PubMed  Google Scholar 

  • Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ (2014) Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 33:481–492

    CAS  PubMed  Google Scholar 

  • Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E et al (2013) Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci 110:10753–10758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kotmakçı M, Çetintaş VB (2015) Extracellular vesicles as natural nanosized delivery systems for small-molecule drugs and genetic material: steps towards the future nanomedicines. J Pharm Pharm Sci 18:396–413

    PubMed  Google Scholar 

  • Kou L, Sun J, Zhai Y, He Z (2013) The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J Pharm Sci 8:1–10

    CAS  Google Scholar 

  • Kumar D, Sharma D, Singh G, Singh M, Rathore MS (2012) Lipoidal soft hybrid biocarriers of supramolecular construction for drug delivery. ISRN Pharm 14:474830

    Google Scholar 

  • Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X et al (2013) Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 5:8307–8325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon EJ, Bergen JM, Pun SH (2008) Application of an HIV gp41-derived peptide for enhanced intracellular trafficking of synthetic gene and siRNA delivery vehicles. Bioconjug Chem 19:920–927

    CAS  PubMed  Google Scholar 

  • Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y et al (2017) Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv 24:45–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Zhang P, Cheetham AG, Walston J, Abadir P, Cui H (2015) Dual peptide conjugation strategy for improved cellular uptake and mitochondria targeting. Bioconjug Chem 26:71–77

    CAS  PubMed  Google Scholar 

  • Lip PZY, Demasi M, Bonatto D (2017) The role of the ubiquitin proteasome system in the memory process. Neurochem Int 102:57–65

    CAS  PubMed  Google Scholar 

  • Lub S, Maes K, Menu E, De Bruyne E, Vanderkerken K, Van Valckenborgh E (2016) Novel strategies to target the ubiquitin proteasome system in multiple myeloma. Oncotarget 7:6521–6537

    PubMed  Google Scholar 

  • Luk BT, Zhang L (2015) Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release 220:600–607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maity AR, Stepensky D (2015) Delivery of drugs to intracellular organelles using drug delivery systems: analysis of research trends and targeting efficiencies. Int J Pharm 496:268–274

    CAS  PubMed  Google Scholar 

  • Malhi SS, Murthy RSR (2012) Delivery to mitochondria: a narrower approach for broader therapeutics. Expert Opin Drug Deliv 9:909–935

    CAS  PubMed  Google Scholar 

  • Matlin KS (2011) Spatial expression of the genome: the signal hypothesis at forty. Nat Rev Mol Cell Biol 12:333–340

    CAS  PubMed  Google Scholar 

  • Nagayama S, Ogawara K-i, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342:215–221

    CAS  PubMed  Google Scholar 

  • Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B (2014) Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol 32:32–45

    CAS  PubMed  Google Scholar 

  • Oh N, Park J-H (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9:51–63

    Google Scholar 

  • Oppici E, Fargue S, Reid ES, Mills PB, Clayton PT, Danpure CJ et al (2015) Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet 24:5500–5511

    CAS  PubMed  Google Scholar 

  • Panariti A, Miserocchi G, Rivolta I (2012) The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci. 97(9):3518–3590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roncador A, Oppici E, Talelli M, Pariente AN, Donini M, Dusi S et al (2017) Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine: glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I. Nanomedicine: nanotechnology. Biol Med 13:897–907

    CAS  Google Scholar 

  • Sahoo SK, Ma W, Labhasetwar V (2004) Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int J Cancer 112:335–340

    CAS  PubMed  Google Scholar 

  • Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Dev Therapy 7:585–599

    CAS  Google Scholar 

  • Sakhtianchi R, Minchin RF, Lee KB, Alkilany AM et al (2013) Exocytosis of nanoparticles from cells: role in cellular retention and toxicity. Adv Colloid Interface Sci 201–202:18–29

    PubMed  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8:137–143

    CAS  PubMed  Google Scholar 

  • Sato YT, Umezaki K, Sawada S, Mukai S-A, Sasaki Y, Harada N et al (2016) Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 6:21933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt C, Lippert AH, Bonakdar N, Sandoghdar V, Voll LM (2016) Compartmentalization and transport in synthetic vesicles. Front Bioeng Biotechnol 4:4–19

    Google Scholar 

  • Selbo PK, Weyergang A, Høgset A, Norum O-J, Berstad MB, Vikdal M et al (2010) Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. J Control Release 148:2–12

    CAS  PubMed  Google Scholar 

  • Shrestha R, Elsabahy M, Florez-Malaver S, Samarajeewa S, Wooley KL (2012) Endosomal escape and siRNA delivery with cationic shell crosslinked knedel-like nanoparticles with tunable buffering capacities. Biomaterials 33:8557–8568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Li D, Zhou Y, Yang J, Yang W, Zhou G et al (2014) Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells. Int J Nanomed 9:2157–2165

    Google Scholar 

  • Srivastava A, Babu A, Filant J, Moxley K, Ruskin R, Dhanasekaran D et al (2016) Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J Biomed Nanotechnol 12:1159–1173

    CAS  PubMed  Google Scholar 

  • Terlecky SR, Koepke JI (2007) Drug delivery to peroxisomes: employing unique trafficking mechanisms to target protein therapeutics. Adv Drug Deliv Rev 59:739–747

    CAS  PubMed  Google Scholar 

  • Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30:2832–2842

    CAS  PubMed  Google Scholar 

  • Treuel L, Jiang X, Nienhaus GU (2013) New views on cellular uptake and trafficking of manufactured nanoparticles. J R Soc Interface 10:20120939

    PubMed  PubMed Central  Google Scholar 

  • Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151:220–228

    CAS  PubMed  Google Scholar 

  • Wang P, Wang X, Wang L, Hou X, Liu W, Chen C (2015) Interaction of gold nanoparticles with proteins and cells. Sci Technol Adv Mater 16:034610

    PubMed  PubMed Central  Google Scholar 

  • Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z (2009) ER–Golgi network—a future target for anti-cancer therapy. Leuk Res 33:1440–1447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada Y, Harashima H (2017) MITO-porter for mitochondrial delivery and mitochondrial functional analysis. In: Singh H, Sheu S-S (eds) Pharmacology of mitochondria. Springer, Cham, pp 457–472

    Google Scholar 

  • Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC (2014) Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190:485–499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P-H, Sun X, Chiu J-F, Sun H, He Q-Y (2005) Transferrin-mediated gold nanoparticle cellular uptake. Bioconjug Chem 16:494–496

    CAS  PubMed  Google Scholar 

  • Zhang Y, Tekobo S, Tu Y, Zhou Q, Jin X, Dergunov SA et al (2012) Permission to enter cell by shape: nanodisk vs nanosphere. ACS Appl Mater Interfaces 4:4099–4105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Vice Research Chairs at King Saud University, Saudi Arabia for funding this work through Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, for funding the work through Grant Number G-2019-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamaleldin I. Harisa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harisa, G.I., Faris, T.M. Direct Drug Targeting into Intracellular Compartments: Issues, Limitations, and Future Outlook. J Membrane Biol 252, 527–539 (2019). https://doi.org/10.1007/s00232-019-00082-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00082-5

Keywords

Navigation