Skip to main content
Log in

Identification and Characterization of the Two-Component System HK8700–RR8701 of Kocuria rhizophila DC2201

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Two-component systems (TCSs) are highly conserved in prokaryotes, endowing cells with multiple physiological functions to respond to changes in the ambient environment. The signaling pathway of a typical TCS consists of a sensory histidine kinase and a response regulator. The TCSs of Kocuria rhizophila, which is usually used as a target strain for various antibiotics and other adverse factors, have captured our interest due to their potential roles in bacterial adaptation for survival. Herein, the distribution and putative biological functions of the TCSs of K. rhizophila DC2201 were analyzed by using bioinformatics, and a preliminary TCS regulatory network was constructed. A representative and important TCS (i.e., HK8700–RR8701 system), which is homologous to the LiaS–LiaR system previously discovered in Bacillus subtilis, was identified and characterized through yeast two-hybrid screening and phosphorylation assays. Detailed information of TCSs is expected to offer novel insights into the adaptation mechanism of K. rhizophila and thus boost its application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nixon BT, Ronson CW, Ausubel FM (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA 83(20):7850–7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69(1):183–215

    Article  CAS  PubMed  Google Scholar 

  3. Galperin MY (2006) Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188(12):4169–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wolanin PM, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol. https://doi.org/10.1186/gb-2002-3-10-reviews3013

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ulrich LE, Zhulin IB (2009) The MiST2 database: a comprehensive genomics resource on microbial signal transduction. Nucleic Acids Res 38(Database issue):D401–D407

    PubMed  PubMed Central  Google Scholar 

  6. Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E, Màrialigeti K (1999) Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 49(1):167–173

    Article  PubMed  Google Scholar 

  7. Takarada H, Sekine M, Kosugi H, Matsuo Y, Fujisawa T, Omata S, Kishi E, Shimizu A, Tsukatani N, Tanikawa S (2008) Complete genome sequence of the soil actinomycete Kocuria rhizophila. J Bacteriol 190(12):4139–4146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pękala A, Paździor E, Antychowicz J, Bernad A, Głowacka H, Więcek B, Niemczuk W (2017) Kocuria rhizophila and Micrococcus luteus as emerging opportunist pathogens in brown trout (Salmo trutta Linnaeus, 1758) and rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Aquaculture 486:285–289

    Article  Google Scholar 

  9. Moissenet D, Becker K, Mérens A, Ferroni A, Dubern B, Vuthien H (2012) Persistent bloodstream infection with Kocuria rhizophila related to a damaged central catheter. J Clin Microbiol 50(4):1495–1498

    Article  PubMed  PubMed Central  Google Scholar 

  10. Becker K, Rutsch F, Uekötter A, Kipp F, König J, Marquardt T, Peters G, Eiff CV (2008) Kocuria rhizophila adds to the emerging spectrum of micrococcal species involved in human infections. J Clin Microbiol 46(10):3537–3539

    Article  PubMed  PubMed Central  Google Scholar 

  11. Alby K, Glaser LJ, Edelstein PH (2015) Kocuria rhizophila misidentified as Corynebacterium jeikeium and other errors caused by the Vitek MS system call for maintained microbiological competence in the era of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 53(1):360–361

    Article  PubMed  Google Scholar 

  12. Tang JS, Gillevet PM (2003) Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. Int J Syst Evol Microbiol 53(Pt 4):995–997

    Article  PubMed  Google Scholar 

  13. Tiwari S, Jamal SB, Hassan SS, Carvalho PVSD, Almedia S, Barh D, Ghosh P, Silva A, Castro T, Azevedo VAC (2017) Two-component signal transduction systems of pathogenic bacteria as targets for antimicrobial therapy: an overview. Front Microbiol 8:1878

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mark DB, Christof F, Roy M, Tjakko A, Siezen RJ (2006) Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis. Microbiology 152(10):3035–3048

    Article  CAS  Google Scholar 

  15. Hutchings MI, Hoskisson P, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor a3(2). Microbiology 150(9):2795–2806

    Article  CAS  PubMed  Google Scholar 

  16. Wible BA, Yang Q, Kuryshev YA, Accili EA, Brown AM (1998) Cloning and expression of a novel K+ channel regulatory protein, KChAP. J Biol Chem 273(19):11745–11751

    Article  CAS  PubMed  Google Scholar 

  17. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360

    Article  CAS  PubMed  Google Scholar 

  18. Wang W, Shu D, Chen L, Jiang W, Lu Y (2009) Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor. FEMS Microbiol Lett 294(2):150–156

    Article  CAS  PubMed  Google Scholar 

  19. Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers SV, Axmann IM, Wiegard A (2017) Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol 17(1):169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cutting JA, Roth TF (1973) Staining of phosphoprotein on acrylamide gel electrophoresis. Anal Biochem 54(2):386–394

    Article  CAS  PubMed  Google Scholar 

  21. Hyyryläinen HL, Sarvas M, Kontinen VP (2005) Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl Microbiol Biotechnol 67(3):389–396

    Article  PubMed  CAS  Google Scholar 

  22. Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48(8):2888–2896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hutchings MI, Hong HJ, Leibovitz E, Sutcliffe IC, Buttner MJ (2006) The σE cell envelope stress response of Streptomyces coelicolor is influenced by a novel lipoprotein, CseA. J Bacteriol 188(20):7222–7229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP (2012) A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains. BMC Genom 13(1):128

    Article  CAS  Google Scholar 

  25. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340(6230):245–246

    Article  CAS  PubMed  Google Scholar 

  26. Niu X, Guiltinan MJ (1994) DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res 22(23):4969–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crowe J, Masone BS, Ribbe J (1995) One-step purification of recombinant proteins with the 6xHis tag and Ni-NTA resin. Mol Biotechnol 4(3):247–258

    Article  CAS  PubMed  Google Scholar 

  28. Kim SY, Chung HJ, Thomas TL (1997) Isolation of a novel class of bZIP transcription factors that interact with ABA-responsive and embryo-specification elements in the Dc3 promoter using a modified yeast one-hybrid system. Plant J 11(6):1237–1251

    Article  CAS  PubMed  Google Scholar 

  29. Tang WH, Zhang JL, Wang ZY, Hong MM (2000) The cause of deviation made in determining the molecular weight of His-tag fusion proteins by SDS-PAGE. J Plant Physiol 26(1):64–68

    CAS  Google Scholar 

  30. Wuichet K, Cantwell BJ, Zhulin IB (2010) Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13(2):219–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Urano H, Umezawa Y, Yamamoto K, Ishihama A, Ogasawara H (2015) Cooperative regulation of the common target genes between hydrogen peroxide-response YedVW and copper-response CusSR in Escherichia coli. Microbiology 161:729–738

    Article  CAS  PubMed  Google Scholar 

  32. Selvamani V, Maruthamuthu MK, Arulsamy K, Eom GT, Hong SH (2017) Construction of methanol sensing Escherichia coli by the introduction of novel chimeric MxcQZ/OmpR two-component system from Methylobacterium organophilum XX. Korean J Chem Eng 34(6):1–6

    Article  CAS  Google Scholar 

  33. Watanabe T, Hashimoto Y, Yamamoto K, Hirao K, Ishihama A, Hino M, Utsumi R (2003) Isolation and characterization of inhibitors of the essential histidine kinase, YycG in Bacillus subtilis and Staphylococcus aureus. J Antibiot 56(12):1045–1052

    Article  CAS  Google Scholar 

  34. Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S, Jensen T, Jarmer H, Devine KM (2007) The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol Microbiol 65(1):180–200

    Article  CAS  PubMed  Google Scholar 

  35. Raghavan V, Groisman EA (2010) Orphan and hybrid two-component system proteins in health and disease. Curr Opin Microbiol 13(2):226–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ninfa AJ (2010) Use of two-component signal transduction systems in the construction of synthetic genetic networks. Curr Opin Microbiol 13(2):240–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L (2010) A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol Microbiol 76(2):348–364

    Article  CAS  PubMed  Google Scholar 

  38. Möker N, Brocker M, Schaffer S, Krämer R, Morbach S, Bott M (2010) Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol 54(2):420–438

    Article  CAS  Google Scholar 

  39. Parish T, Smith DA, Roberts G, Betts J, Stoker NG (2003) The SenX3-RegX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149(6):1423–1435

    Article  CAS  PubMed  Google Scholar 

  40. Glover R, Kriakov J, Garforth SJ, Betts J, Stoker NG (2007) The two-component regulatory system SenX3-RegX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 189(15):5495–5503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingmer H, Miller CA, Cohen SN (1998) Destabilized inheritance of pSC101 and other Escherichia coli plasmids by DpiA, a novel two-component system regulator. Mol Microbiol 29(1):49–59

    Article  CAS  PubMed  Google Scholar 

  42. Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS, De MD (2002) Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol Microbiol 45(5):1379–1388

    Article  CAS  PubMed  Google Scholar 

  43. Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in B acillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188(14):5153–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ito G, Katsemonova K, Tonelli F, Lis P, Baptista MAS, Shpiro N, Duddy G, Wilson S, Ho WL, Ho SL (2016) Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochem J 473(17):2671–2685

    Article  CAS  PubMed  Google Scholar 

  45. Danismazoglu M, Nalcacioglu R, Muratoglu H, Demirbag Z (2018) The protein-protein interactions between Amsacta moorei entomopoxvirus (AMEV) protein kinases (PKs) and all viral proteins. Virus Res 248:31–38

    Article  CAS  PubMed  Google Scholar 

  46. Lee GF, Burrows GG, Lebert MR, Dutton DP, Hazelbauer GL (1994) Deducing the organization of a transmembrane domain by disulfide cross-linking. The bacterial chemoreceptor Trg. J Biol Chem 269(47):29920–29927

    CAS  PubMed  Google Scholar 

  47. Borkovich KA, Simon MI (1990) The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63(6):1339–1348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We deeply appreciate Liangguo Xu for assistance with strains and plasmids. This work was supported by the National Natural Science Foundation of China (Grant No. 31360018), Key R&D Program Projects of Jiangxi Province, China (Grant No. 20161BBF60076), and the Innovation Program for Graduates of Jiangxi Normal University (Grant No. YJS2018081).

Author information

Authors and Affiliations

Authors

Contributions

ZL designed the study. BC and TZ performed the experiments. YH and HN contributed to the results analysis and discussion. BC wrote the manuscript, and ZL and LZ revised the manuscript. All the authors approved the paper.

Corresponding author

Correspondence to Zhong-er Long.

Ethics declarations

Conflict of interest

The authors have declared that they have no competing interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zou, T., Zou, L. et al. Identification and Characterization of the Two-Component System HK8700–RR8701 of Kocuria rhizophila DC2201. Protein J 38, 683–692 (2019). https://doi.org/10.1007/s10930-019-09853-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09853-4

Keywords

Navigation