Skip to main content
Log in

Evidence to Suggest Bacterial Lipoprotein Diacylglyceryl Transferase (Lgt) is a Weakly Associated Inner Membrane Protein

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The unique and ubiquitous bacterial lipoprotein biosynthesis pathway is an attractive new antibiotic target. Crystal structures of its three biosynthetic enzymes have been solved recently. The first enzyme, Phosphatidylglycerol:proLipoprotein diacylglyceryl Transferase (Lgt), which initiates the post-translational modification at the metabolic interface of protein biosynthesis, phospholipid biosynthesis, protein secretion and lipid modification was reported to be a seven-transmembrane helical structure with a catalytic periplasmic head. Its complete solubilization in water or mild detergent in a fully active state, its chromatographic behaviour as an active monomer in the absence of detergent and recovery of active whole-length protein after proteolytic treatment of spheroplasts cast serious doubts about its proposed membrane association and orientation. Rather, it could be a seven-helical bundle partially embedded in the inner membrane’s inner leaflet aided by hydrophobic interaction. In fact, there are examples where originally reported seven-transmembrane proteins were later shown to be seven-helical peripheral membrane proteins based on solubilization criterion and re-analysis. Validated computational tool, Membrane Optimal Docking Area (MODA), also predicted a weaker association of Lgt’s helices with the membrane compared to typical transmembrane proteins. This insight is crucial to Lgt-based antibiotic design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Lgt:

Phosphatidylglycerol:proLipoprotein diacylglyceryl transferase

LspA:

Lipoprotein signal peptidase II

Lnt:

apoLipoprotein N-acyl transferase

GPCR:

G protein-coupled receptor

MODA:

Membrane Optimal Docking Area

VADAR:

Volume Area Dihedral Angle Reporter

PG:

Phosphatidylglycerol

IMV:

Inverted membrane vesicles

OG:

n-octyl-β-d-glucoside

ASA:

Accessible surface area

PDB:

Protein Data Bank

References

  • Alagumaruthanayagam A, Sankaran K (2012) High-throughput fluorescence-based early antibiogram determination using clinical Escherichia coli isolates as case study. Microb Drug Resist 18:586–596

    Article  CAS  Google Scholar 

  • Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K (2006) A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol 188:2761–2773

    Article  CAS  Google Scholar 

  • Banerjee S, Sankaran K (2013) First ever isolation of bacterial prolipoprotein diacylglyceryl transferase in single step from Lactococcus lactis. Protein Expr Purif 87:120–128

    Article  CAS  Google Scholar 

  • Bauer H, Mayer H, Marchler-Bauer A, Salzer U, Prohaska R (2000) Characterization of p40/GPR69A as a peripheral membrane protein related to the lantibiotic synthetase component C. Biochem Biophys Res Commun 275:69–74

    Article  CAS  Google Scholar 

  • Cuthbertson JM, Doyle DA, Sansom MS (2005) Transmembrane helix prediction: a comparative evaluation and analysis. Protein Eng Des Sel 18:295–308

    Article  CAS  Google Scholar 

  • Dev IK, Ray PH (1984) Rapid assay and purification of a unique signal peptidase that processes the prolipoprotein from Escherichia coli B. J Biol Chem 259:11114–11120

    CAS  PubMed  Google Scholar 

  • Hayashi S, Wu HC (1985) Accumulation of prolipoprotein in Escherichia coli mutants defective in protein secretion. J Bacteriol 161:949–954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedin LE, Ojemalm K, Bernsel A, Hennerdal A, Illergard K, Enquist K, Kauko A, Cristobal S, von Heijne G, Lerch-Bader M, Nilsson I, Elofsson A (2010) Membrane insertion of marginally hydrophobic transmembrane helices depends on sequence context. J Mol Biol 396:221–229

    Article  CAS  Google Scholar 

  • Islam ST, Lam JS (2013) Topological mapping methods for alpha-helical bacterial membrane proteins—an update and a guide. Microbiologyopen 2:350–364

    Article  CAS  Google Scholar 

  • Johnston CA, Temple BR, Chen JG, Gao Y, Moriyama EN, Jones AM, Siderovski DP, Willard FS (2007) Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318:914 (author reply 914)

    Article  CAS  Google Scholar 

  • Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40:W294–W297

    Article  CAS  Google Scholar 

  • Kosic N, Sugai M, Fan CK, Wu HC (1993) Processing of lipid-modified prolipoprotein requires energy and sec gene products in vivo. J Bacteriol 175:6113–6117

    Article  CAS  Google Scholar 

  • Kufareva I, Lenoir M, Dancea F, Sridhar P, Raush E, Bissig C, Gruenberg J, Abagyan R, Overduin M (2014) Discovery of novel membrane binding structures and functions. Biochem Cell Biol 92:555–563

    Article  CAS  Google Scholar 

  • Kumar S, Balamurali MM, Sankaran K (2014) Bacterial lipid modification of proteins requires appropriate secretory signals even for expression—implications for biogenesis and protein engineering. Mol Membr Biol 31:183–194

    Article  CAS  Google Scholar 

  • Liu X, Yue Y, Li B, Nie Y, Li W, Wu WH, Ma L (2007) A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315:1712–1716

    Article  CAS  Google Scholar 

  • Lu G, Xu Y, Zhang K, Xiong Y, Li H, Cui L, Wang X, Lou J, Zhai Y, Sun F, Zhang XC (2017) Crystal structure of E. coli apolipoprotein N-acyl transferase. Nat Commun 8:15948

    Article  CAS  Google Scholar 

  • Mao G, Zhao Y, Kang X, Li Z, Zhang Y, Wang X, Sun F, Sankaran K, Zhang XC (2016) Crystal structure of E. coli lipoprotein diacylglyceryl transferase. Nat Commun 7:10198

    Article  CAS  Google Scholar 

  • Mayer H, Salzer U, Breuss J, Ziegler S, Marchler-Bauer A, Prohaska R (1998) Isolation, molecular characterization, and tissue-specific expression of a novel putative G protein-coupled receptor. Biochim Biophys Acta 1395:301–308

    Article  CAS  Google Scholar 

  • Noland CL, Kattke MD, Diao J, Gloor SL, Pantua H, Reichelt M, Katakam AK, Yan D, Kang J, Zilberleyb I, Xu M, Kapadia SB, Murray JM (2017) Structural insights into lipoprotein N-acylation by Escherichia coli apolipoprotein N-acyltransferase. Proc Natl Acad Sci USA 114:E6044–E6053

    Article  CAS  Google Scholar 

  • Pailler J, Aucher W, Pires M, Buddelmeijer N (2012) Phosphatidylglycerol:prolipoprotein diacylglyceryl transferase (Lgt) of Escherichia coli has seven transmembrane segments, and its essential residues are embedded in the membrane. J Bacteriol 194:2142–2151

    Article  CAS  Google Scholar 

  • Punta M, Forrest LR, Bigelow H, Kernytsky A, Liu J, Rost B (2007) Membrane protein prediction methods. Methods 41:460–474

    Article  CAS  Google Scholar 

  • Qi HY, Sankaran K, Gan K, Wu HC (1995) Structure-function relationship of bacterial prolipoprotein diacylglyceryl transferase: functionally significant conserved regions. J Bacteriol 177:6820–6824

    Article  CAS  Google Scholar 

  • Robertson RM, Yao J, Gajewski S, Kumar G, Martin EW, Rock CO, White SW (2017) A two-helix motif positions the lysophosphatidic acid acyltransferase active site for catalysis within the membrane bilayer. Nat Struct Mol Biol 24:666–671

    Article  CAS  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  Google Scholar 

  • Sankaran K, Wu HC (1994) Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 269:19701–19706

    CAS  PubMed  Google Scholar 

  • Sankaran K, Gan K, Rash B, Qi HY, Wu HC, Rick PD (1997) Roles of histidine-103 and tyrosine-235 in the function of the prolipoprotein diacylglyceryl transferase of Escherichia coli. J Bacteriol 179:2944–2948

    Article  CAS  Google Scholar 

  • Selvan AT, Sankaran K (2008) Localization and characterization of prolipoprotein diacylglyceryl transferase (Lgt) critical in bacterial lipoprotein biosynthesis. Biochimie 90:1647–1655

    Article  CAS  Google Scholar 

  • Shruthi H, Anand P, Murugan V, Sankaran K (2010) Twin arginine translocase pathway and fast-folding lipoprotein biosynthesis in E. coli: interesting implications and applications. Mol BioSyst 6:999–1007

    Article  CAS  Google Scholar 

  • Sundaram S, Banerjee S, Sankaran K (2012) The first nonradioactive fluorescence assay for phosphatidylglycerol:prolipoprotein diacylglyceryl transferase that initiates bacterial lipoprotein biosynthesis. Anal Biochem 423:163–170

    Article  CAS  Google Scholar 

  • Sutcliffe IC, Russell RR (1995) Lipoproteins of gram-positive bacteria. J Bacteriol 177:1123–1128

    Article  CAS  Google Scholar 

  • Tokuda H, Matsuyama S (2004) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1694:IN1-9

    PubMed  Google Scholar 

  • Vogeley L, El Arnaout T, Bailey J, Stansfeld PJ, Boland C, Caffrey M (2016) Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351:876–880

    Article  CAS  Google Scholar 

  • Willard L, Ranjan A, Zhang H, Monzavi H, Boyko RF, Sykes BD, Wishart DS (2003) VADAR: a web server for quantitative evaluation of protein structure quality. Nucleic Acids Res 31:3316–3319

    Article  CAS  Google Scholar 

  • Wu HC, Tokunaga M (1986) Biogenesis of lipoproteins in bacteria. Curr Top Microbiol Immunol 125:127–157

    CAS  PubMed  Google Scholar 

  • Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502

    Article  CAS  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40

    Article  Google Scholar 

  • Zuckert WR (2014) Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond. Biochim Biophys Acta 1843:1509–1516

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the support from DBT-BUILDER Programme (BT/PR12153/INF/22/200/2014), Department of Biotechnology, Government of India, New Delhi. We gratefully acknowledge the critical reading, comments and inputs of Dr. M. Madan Babu of LMB, Cambridge, UK.

Funding

This study was funded by the Department of Biotechnology, BUILDER programme, Government of India (BT/PR12153/INF/22/200/2014).

Author information

Authors and Affiliations

Authors

Contributions

NS performed cloning, expression and Lgt fluorescent assay; conceived and performed the in silico analysis and wrote the manuscript. SK performed solubilization and gel mobility assays. KS conceived the concept, mentored, wrote and edited the manuscript.

Corresponding authors

Correspondence to Nikhil Sangith or Krishnan Sankaran.

Ethics declarations

Conflict of interest

Authors NS, SK and KS declare that there is no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangith, N., Kumar, S. & Sankaran, K. Evidence to Suggest Bacterial Lipoprotein Diacylglyceryl Transferase (Lgt) is a Weakly Associated Inner Membrane Protein. J Membrane Biol 252, 563–575 (2019). https://doi.org/10.1007/s00232-019-00076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00076-3

Keywords

Navigation