Skip to main content

Advertisement

Log in

Echo dephasing and heat capacity from constrained and unconstrained dynamics of triiodothyronine nuclear receptor protein

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The objective of this study is to observe the echo feature curves, vibrational dephasing, and heat capacity of a protein–hormone system taking thyroid hormone receptor-beta (THR-β) as an example. Constrained and unconstrained molecular dynamics simulations are performed by implementing the theory of velocity reassignments to probe the phase coherent state in terms of echo pulses. The constrained vibrations are incorporated by adjusting rigid bonds to all hydrogen atoms with an integrator parameter of 2 fs/step in order to reduce the degrees of freedom whereas 1 fs/step is used in the free vibrations of the atomic cluster. The nature of temperature auto-correlation functions changes so that echo feature curves also show a distinct nature in the cases of constrained and unconstrained vibrations. There is a large variation in kinetic temperature and internal potential energy in the echo time zone. The temperature rate of change of internal potential energy is the main contributor to the heat capacity of the native state protein–hormone system. The heat capacity of proteins estimated from this technique is in good agreement with the values from experiments. This study shows that triiodothyronine (T3) hormone makes some differences in heat capacity upon binding to the THR-β ligand binding domain (LBD). The physical properties of unliganded THR-β and T3-bound THR-β LBD in the cases of constrained and unconstrained dynamics are observed distinctly under the effect of anharmonicity on the phase coherent state of normal modes and the dephasing time lies in a range of 0.6–0.8 ps when the systems are perturbed suddenly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Álvarez, R.M.S., Cutin, E.H., Farías, R.N.: Conformational changes of 3, 5, 3′-triiodo l-thyronine induced by interactions with phospholipid: physiological speculations. J. Membr. Biol. 205(2), 61–69 (2005)

    Article  Google Scholar 

  2. Souza, P.C.T., Puhl, A.C., Martínez, L., Aparício, R., Nascimento, A.S., Figueira, A.C.M., Nguyen, P., Webb, P., Skaf, M.S., Polikarpov, I.: Identification of a new hormone-binding site on the surface of thyroid hormone receptor. Mol. Endocrinol. 28(4), 534–545 (2014)

    Article  Google Scholar 

  3. Obregon, M.J., del Rey, F.E., de Escobar, G.M.: The effects of iodine deficiency on thyroid hormone deiodination. Thyroid 15(8), 917–929 (2005)

    Article  Google Scholar 

  4. Chiamolera, M.I., Wondisford, F.E.: Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinol. 150(3), 1091–1096 (2009)

    Article  Google Scholar 

  5. Forrest, D., Hanebuth, E., Smeyne, R.J., Everds, N., Stewart, C.L., Wehner, J.M., Curran, T.: Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. EMBO J. 15(12), 3006–3015 (1996)

    Article  Google Scholar 

  6. Sandler, B., Webb, P., Apriletti, J.W., Huber, B.R., Togashi, M., Lima, S.T.C., Juric, S., Nilsson, S., Wagner, R., Fletterick, R.J., Baxter, J.D.: Thyroxine-thyroid hormone receptor interactions. J. Biol. Chem. 279(53), 55801–55808 (2004)

    Article  Google Scholar 

  7. Ortiga-Carvalho, T.M., Sidhaye, A.R., Wondisford, F.E.: Thyroid hormone receptors and resistance to thyroid hormone disorders. Nature Rev. Endocrinol. 10(10), 582 (2004)

    Article  Google Scholar 

  8. Zhuang, S., Bao, L., Linhananta, A., Liu, W.: Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. J. Mol. Graph. Model. 44, 155–160 (2013)

    Article  Google Scholar 

  9. Lu, L., Zhan, T., Ma, M., Xu, C., Wang, J., Zhang, C., Liu, W., Zhuang, S.: Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β: in vitro, in vivo and molecular dynamics simulation study. Environ. Sci. Technol. 52(11), 6617–6625 (2018)

    Article  ADS  Google Scholar 

  10. König, G., Brooks, B.R.: Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations. Biochim. Biophy. Acta 1850(5), 932–943 (2015)

    Article  Google Scholar 

  11. Van Gunsteren, W.F., Berendsen, H.J.C.: Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys. 34(5), 1311–1327 (1977)

    Article  ADS  Google Scholar 

  12. Ryckaert, J.P., Ciccotti, G., Berendsen, H.J.: Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comp. Phys. 23(3), 327–341 (1977)

    Article  ADS  Google Scholar 

  13. Van Gunsteren, W.F., Karplus, M.: Effect of constraints on the dynamics of macromolecules. Macromolecules 15(6), 1528–1544 (1982)

    Article  ADS  Google Scholar 

  14. Fayer, M.D.: Fast protein dynamics probed with infrared vibrational echo experiments. Annu. Rev. Phys. Chem. 52(1), 315–356 (2001)

    Article  ADS  Google Scholar 

  15. Rector, K.D., Kwok, A.S., Ferrante, C., Tokmakoff, A., Rella, C.W., Fayer, M.D.: Vibrational anharmonicity and multilevel vibrational dephasing from vibrational echo beats. J. Chem. Phys. 106(24), 10027–10036 (1997)

    Article  ADS  Google Scholar 

  16. Rella, C.W., Kwok, A., Rector, K., Hill, J.R., Schwettman, H.A., Dlott, D.D., Fayer, M.D.: Vibrational echo studies of protein dynamics. Phys. Rev. Lett. 77(8), 1648 (1996)

    Article  ADS  Google Scholar 

  17. Noid, W.G., Ezra, G.S., Loring, R.F.: Vibrational echoes: dephasing, rephasing, and the stability of classical trajectories. J. Phys. Chem. B 108(21), 6536–6543 (2004)

    Article  Google Scholar 

  18. Xu, D., Schulten, K., Becker, O.M., Karplus, M.: Temperature quench echoes in proteins. J. Chem. Phys. 103(8), 3112–3123 (2004)

    Article  ADS  Google Scholar 

  19. Schulten, K., Lu, H., Bai, L.: Probing protein motion through temperature echoes. In: Phys. Biol. Systems, pp. 117–152. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Prabhu, N.V., Sharp, K.A.: Heat capacity in proteins. Annu. Rev. Phys. Chem. 56, 521–548 (2005)

    Article  ADS  Google Scholar 

  21. Gomez, J., Hilser, V.J., Xie, D., Freire, E.: The heat capacity of proteins. Proteins 22(4), 404–412 (1995)

  22. Fujisaki, H., Zhang, Y., Straub, J.E.: Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins. J. Chem. Phys. 124(14), 144910 (2006)

    Article  ADS  Google Scholar 

  23. Nascimento, A.S., Dias, S.M.G., Nunes, F.M., Aparício, R., Ambrosio, A.L., Bleicher, L., Figueira, A.C.M., Santos, M.A.M., de Oliveira Neto, M., Fischer, H., Togashi, M.: Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function. J. Mol. Biol. 360(3), 586–598 (2006)

    Article  Google Scholar 

  24. MacKerell, A.D., Feig, M., Brooks, C.L.: Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comp. Chem. 25(11), 1400–1415 (2004)

    Article  Google Scholar 

  25. MacKerell Jr., A.D., Bashford, D., Bellott, M.L.D.R., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S.: Joseph-McCarthy, D.: all-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)

    Article  Google Scholar 

  26. Zoete, V., Cuendet, M.A., Grosdidier, A., Michielin, O.: Swiss Param: a fast force field generation tool for small organic molecules. J. Comp. Chem. 32(11), 2359–2368 (2011)

    Article  Google Scholar 

  27. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with NAMD. J. Comp. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  28. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  29. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159(1), 98–103 (1996)

    Article  ADS  Google Scholar 

  30. Rahat, O., Alon, U., Levy, Y., Schreiber, G.: Understanding hydrogen-bond patterns in proteins using network motifs. Bioinformatics 25(22), 2921–2928 (2009)

    Article  Google Scholar 

  31. Lobanov, M.Y., Bogatyreva, N.S., Galzitskaya, O.V.: Radius of gyration as an indicator of protein structure compactness. Mol. Biol. 42(4), 623–628 (2008)

    Article  Google Scholar 

  32. Privalov, P.L., Potekhin, S.A.: Scanning microcalorimetry in studying temperature-induced changes in proteins. In: Methods Enzymol., pp. 4–51. Academic Press (1986)

Download references

Acknowledgements

This work was partially supported by the Nepal Academy of Science and Technology (NAST) through a grant of PhD fellowship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Prasad Lamichhane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamichhane, T.R., Paudel, S., Yadav, B.K. et al. Echo dephasing and heat capacity from constrained and unconstrained dynamics of triiodothyronine nuclear receptor protein. J Biol Phys 45, 107–125 (2019). https://doi.org/10.1007/s10867-018-9518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9518-3

Keywords

Navigation