Skip to main content
Log in

The NADPH oxidase in Volvariella volvacea and its differential expression in response to mycelial ageing and mechanical injury

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

NADPH oxidases are enzymes that have been reported to generate reactive oxygen species (ROS) in animals, plants and many multicellular fungi in response to environmental stresses. Six genes of the NADPH oxidase complex components, including vvnoxa, vvnoxb, vvnoxr, vvbema, vvrac1 and vvcdc24, were identified based on the complete genomic sequence of the edible fungus Volvariella volvacea. The number of vvnoxa, vvrac1, vvbema and vvcdc24 transcripts fluctuated with ageing, and the gene expression patterns of vvnoxa, vvrac1 and vvbema were significantly positively correlated. However, the expression of vvnoxb and vvnoxr showed no significant difference during ageing. In hyphae subjected to mechanical injury stress, both O2 and H2O2 concentrations were increased. The expression of vvnoxa, vvrac1, vvbema and vvcdc24 was substantially upregulated, but vvnoxb and vvnoxr showed no response to mechanical injury stress at the transcriptional level. Additionally, the transcription of vvnoxa, vvrac1, vvbema and vvcdc24 could be repressed when the intracellular ROS were eliminated by diphenyleneiodonium (DPI) chloride and reduced glutathione (GSH) treatments. These results indicated a positive feedback loop involving NADPH oxidase and intracellular ROS, which might be the reason for the oxidative burst during injury stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguirre J, Ríosmomberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118. https://doi.org/10.1016/j.tim.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  2. Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856. https://doi.org/10.1093/jxb/erv089

    Article  CAS  PubMed  Google Scholar 

  3. Choudhury FK, Rivero RM, Blumwald E, Mittler R (2016) Reactive oxygen species abiotic stress and stress combination. Plant J 90:856–867. https://doi.org/10.1111/tpj.13299

    Article  CAS  PubMed  Google Scholar 

  4. Marschall R, Tudzynski P (2016) Reactive oxygen species in development and infection processes. Semin Cell Dev Biol 57:138–146. https://doi.org/10.1016/j.semcdb.2016.03.020

    Article  CAS  PubMed  Google Scholar 

  5. Davalli P, Mitic T, Caporali A, Lauriola A, D’Arca D (2016) ROS cell senescence and novel molecular mechanisms in aging and age-related diseases. Oxidative Med Cell Longev 2016:3565127. https://doi.org/10.1155/2016/3565127

    Article  CAS  Google Scholar 

  6. Takemoto D, Tanaka A, Scott B (2007) NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. Fungal Genet Biol 44:1065–1076. https://doi.org/10.1016/j.fgb.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Ushio-Fukai M (2007) VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal 9:731–739. https://doi.org/10.1089/ars.2007.1556

    Article  CAS  PubMed  Google Scholar 

  8. Ushio-Fukai M (2009) Compartmentalization of redox signaling through NADPH oxidase–derived ROS. Antioxid Redox Signal 11:1289–1299. https://doi.org/10.1089/ars.2008.2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15. https://doi.org/10.1016/j.tplants.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  10. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci U S A 108:2861–2866. https://doi.org/10.1073/pnas.1017309108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tudzynski P, Heller J, Siegmund U (2012) Reactive oxygen species generation in fungal development and pathogenesis. Curr Opin Microbiol 15:653–659. https://doi.org/10.1016/j.mib.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  12. Cano-Domínguez N, Alvarez-Delfín K, Hansberg W, Aguirre J (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7:1352–1361. https://doi.org/10.1128/EC.00137-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Segmüller N, Kokkelink L, Giesbert S, Odinius D, Van KJ, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant-Microbe Interact 21:808–819. https://doi.org/10.1094/MPMI-21-6-0808

    Article  PubMed  Google Scholar 

  14. Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher MC (2001) Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex. Biochemistry 40:10014–10022. https://doi.org/10.1021/bi010289c

    Article  CAS  PubMed  Google Scholar 

  15. Kayano Y, Tanaka A, Akano F, Scott B, Takemoto D (2013) Differential roles of NADPH oxidases and associated regulators in polarized growth conidiation and hyphal fusion in the symbiotic fungus Epichloë festucae. Fungal Genet Biol 56:87–97. https://doi.org/10.1016/j.fgb.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  16. Liu Z, Zhang K, Lin JF, Guo LQ (2011) Breeding cold tolerance strain by chemical mutagenesis in Volvariella volvacea. Sci Hortic (Amsterdam) 130:18–24. https://doi.org/10.1016/j.scienta.2011.06.020

    Article  CAS  Google Scholar 

  17. Bao D, Gong M, Zheng H, Chen M, Zhang L, Wang H, Jiang J, Wu L, Zhu Y, Zhu G, Zhou Y, Li C, Wang S, Zhao Y, Zhao G, Tan Q (2013) Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One 8:e58294. https://doi.org/10.1371/journal.pone.0058294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang J, Guo L, Lin J (2009) Composition of transgenic Volvariella volvacea tolerant to cold stress is equivalent to that of conventional control. J Agric Food Chem 57:2392–2396. https://doi.org/10.1021/jf803363g

    Article  CAS  PubMed  Google Scholar 

  19. Braaksma A, Schaap DJ, Schipper CMA (1999) Time of harvest determines the postharvest quality of the common mushroom Agaricus bisporus. Postharvest Biol Technol 16:195–198. https://doi.org/10.1016/S0925-5214(99)00019-8

    Article  Google Scholar 

  20. Zikriyani H, Saskiawan I, Mangunwardoyo W (2018) Utilization of agricultural waste for cultivation of paddy straw mushrooms (Volvariella volvacea (Bull.) Singer 1951). Int. J Agric Technol 14:805–814

    CAS  Google Scholar 

  21. Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding systemin and methyl jasmonate. Plant Cell 13:179–191. https://doi.org/10.2307/3871162

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kumar GNM, Iyer S, Knowles NR (2007)Strboh a homologue of NADPH oxidase regulates wound-induced oxidative burst and facilitates wound-healing in potato tubers. Planta 227:25–36. https://doi.org/10.1007/s00425-007-0589-9

    Article  CAS  PubMed  Google Scholar 

  23. Hernández-Oñate MA, Esquivel-Naranjo EU, Mendoza-Mendoza A, Stewart A, Herrera-Estrella AH (2012) An injury-response mechanism conserved across kingdoms determines entry of the fungus Trichoderma atroviride into development. Proc Natl Acad Sci U S A 109:14918–14923. https://doi.org/10.1073/pnas.1209396109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yan J, Guo L, Zhao J, Xie B (2014) Sequence characterization and differential expression of a glutathione S-transferase gene vv-gto1 from Volvariella volvacea. Acta Microbiol Sin 54:1171–1177. https://doi.org/10.13343/j.cnki.wsxb.2014.10.009 (In Chinese)

    Article  CAS  Google Scholar 

  25. Yan J, Zhang L, Wang R, Xie B, Li X, Chen R, Guo L, Xie B (2016) The sequence characteristics and expression models reveal superoxide dismutase involved in cold response and fruiting body development in Volvariella volvacea. Int J Mol Sci 17:34. https://doi.org/10.3390/ijms17010034

    Article  CAS  Google Scholar 

  26. Yan JJ, Zhang L, Xie B, Huang QH, Long Y, Xie BG (2017) A novel visual method for fungal gene alternative splicing analysis: expanded application of ZOOM software. Mycosystema 36:618–624. https://doi.org/10.13346/j.mycosystema.160188

    Article  Google Scholar 

  27. Zhang Z, Lin H, Ma B (2010) ZOOM Lite: Next-generation sequencing data mapping and visualization software. Nucleic Acids Res 38:W743–W748. https://doi.org/10.1093/nar/gkq538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lara-Ortíz T, River-Osrosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255. https://doi.org/10.1046/j.1365-2958.2003.03800.x

    Article  CAS  PubMed  Google Scholar 

  29. Wennerberg K, Rossman KL, Der CJ (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846. https://doi.org/10.1242/jcs.01660

    Article  CAS  PubMed  Google Scholar 

  30. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003; 31: 3497-3500. DOI: org/https://doi.org/10.1093/nar/gkg500.

  31. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan J, Xie B, Zhang L, Li S, van Peer AF, Wu T, Chen B, Xie B (2016) Small GTPases and stress responses of vvran1 in the straw mushroom Volvariella volvacea. Int J Mol Sci 17:1527. https://doi.org/10.3390/ijms17091527

    Article  CAS  PubMed Central  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔct method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  34. Tao Y, Van Peer AF, Huang Q, Shao Y, Zhang L, Xie B, Jiang Y, Zhu J, Xie B (2016) Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi. Sci Rep 6:29236. https://doi.org/10.1038/srep29236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qian J, Gao Y, Wáng Y, Wu Y, Wāng Y, Zhao Y, Chen H, Bao D, Xu J, Bian X (2018) Selection and evaluation of appropriate reference genes for RT-qPCR normalization of Volvariella volvacea gene expression under different conditions. Biomed Res Int 2018:6125706. https://doi.org/10.1155/2018/6125706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barceló AR (1998) Hydrogen peroxide production is a general property of the lignifying xylem from vascular plants. Ann Bot 82:97–103. https://doi.org/10.1006/anbo.1998.0655

    Article  Google Scholar 

  37. Shinogi, T, Suzuki, T, Kurihara, T, Narusaka, Y, Park, P. Microscopic detection of reactive oxygen species generation in the compatible and incompatible interactions of Alternaria alternata Japanese pear pathotype and host plants. J Gen Plant Pathol. 2003; 69: 7–16. https://doi.org/10.1007/s10327-002-0013-z.

    Article  CAS  Google Scholar 

  38. Aguirre J, Lambeth JA (2010) Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radic Biol Med 49:1342–1353. https://doi.org/10.1016/j.freeradbiomed.2010.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Siegmund U, Marschall R, Tudzynski P (2015) BcNoxD a putative ER protein is a new component of the NADPH oxidase complex in Botrytis cinerea. Mol Microbiol 95:988–1005. https://doi.org/10.1111/mmi.12869

    Article  CAS  PubMed  Google Scholar 

  40. Lacaze I, Lalucque H, Siegmund U, Silar P, Brun S (2015) Identification of NoxD/Pro41 as the homologue of the p22phox NADPH oxidase subunit in fungi. Mol Microbiol 95:1006–1024. https://doi.org/10.1111/mmi.12876

    Article  CAS  PubMed  Google Scholar 

  41. Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun M.H, Silar P. The crucial role of the Pls1 tetraspanin during ascospore germination in podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 2008; 7: 1809-1818. DOI: https://doi.org/10.1128/EC.00149-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Siegmund U, Heller J, Kann JALV, Tudzynski P (2013) The NADPH oxidase complexes in Botrytis cinerea: evidence for a close association with the ER and the tetraspanin Pls1. PLoS One 8:e55879. https://doi.org/10.1371/journal.pone.0055879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott B (2015) Conservation of fungal and animal nicotinamide adenine dinucleotide phosphate oxidase complexes. Mol Microbiol 95:910–913. https://doi.org/10.1111/mmi.12946

    Article  CAS  PubMed  Google Scholar 

  44. Fridlyanskaya I, Alekseenko L, Nikolsky N (2015) Senescence as a general cellular response to stress: a mini-review. Exp Gerontol 72:124–128. https://doi.org/10.1016/j.exger.2015.09.021

    Article  PubMed  Google Scholar 

  45. Low PS, Merida JR (1996) The oxidative burst in plant defense: function and signal transduction. Physiol Plant 96:533–542. https://doi.org/10.1111/j.1399-3054.1996.tb00469.x

    Article  CAS  Google Scholar 

  46. Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen-activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238. https://doi.org/10.1093/jxb/erp157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gémes K, Kim YJ, Park KY, Moschou PN, Andronis E, Valassakis C, Roussis A, Roubelakis-Angelakis KA (2016) An NADPH-oxidase/polyamine oxidase feedback loop controls oxidative burst under salinity. Plant Physiol 172:1418–1431. https://doi.org/10.1104/pp.16.01118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493. https://doi.org/10.1016/j.mib.2008.10.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the “Excellent initiative” for graduate students of College of Life Sciences, Fujian Agriculture and Forestry University; the Fujian Edible Fungi Engineering Technology Research Center and the National Fungi Breeding Center (Fujian Branch) provide the experimental facilities for this study.

Funding

This work was financially supported by grants from the China Agriculture Research System (CARS24), the National Key Basic Research Program of China (2014CB138302) and the Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University.

Author information

Authors and Affiliations

Authors

Contributions

XBG and YJJ conceived and designed the experiments; YJJ, TZJ, LYY, LZY, LY, HX and XWN performed the experiments; YJJ, HQH and TYX analysed the data; YJJ, LYY and TZJ contributed reagents/materials/analysis tools; YJJ wrote the paper; XBG edited the paper; and all authors reviewed the manuscript.

Corresponding author

Correspondence to Bao-Gui Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Derlene Attili de Angelis.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, JJ., Tong, ZJ., Liu, YY. et al. The NADPH oxidase in Volvariella volvacea and its differential expression in response to mycelial ageing and mechanical injury. Braz J Microbiol 51, 87–94 (2020). https://doi.org/10.1007/s42770-019-00165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00165-4

Keywords

Navigation