Skip to main content
Log in

Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Objective

Biodegradable stents represent a new technological development in the field of cardiovascular angioplasty. The stent geometry plays a crucial role in determining stent performance.

Methods

This study describes four stent models with various strut geometries (circular, triangular, hexagonal, and spline) and identical links. The performance of the various stents is assessed by modeling the processes of compression and balloon expansion using experimental and numerical techniques.

Results

Four adjustable variables related to radial strength, foreshortening rate, maximum expanded diameter and coverage are considered in this studies. The maximum stress distributions from our numerical analysis are in agreement with the experimental fracture measurements.

Conclusion

Analysis of the stent parameters indicates that the hexagonal geometry is a relatively good stent strut design. The results described in this paper will be useful in further optimization studies and for the development of stents with a higher radial strength and increased fracture resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Azaouzi, M., A. Makradi, and S. Belouettar. Balloon expandable stent design using finite element method. Comput. Mater. Sci. 72(9):54–61, 2013.

    Article  Google Scholar 

  2. Berglund, J., Y. Guo, and J. N. Wilcox. Challenges related to development of bioabsorbable vascular stents. Eurointervention 5(Suppl F):F72, 2009.

    Article  Google Scholar 

  3. Bianchi, M., et al. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs 40:E292–E304, 2016.

    Article  Google Scholar 

  4. Bobel, A. C., S. Petisco, J. R. Sarasua, et al. Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent. Cardiovasc. Eng. Technol. 6(4):519–532, 2015.

    Article  Google Scholar 

  5. Cheng, Y., S. Deng, P. Chen, et al. Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4(3):259–264, 2009.

    Article  Google Scholar 

  6. Clune, R., J. S. Campbell, et al. NURBS modeling and structural shape optimization of cardiovascular stents. Struct. Multidiscip. Optim. 50(1):159–168, 2014.

    Article  MathSciNet  Google Scholar 

  7. Debusschere, N., P. Segers, P. Dubruel, et al. A computational framework to model degradation of biocorrodible metal stents using an implicit finite element solver. Ann. Biomed. Eng. 44(2):382–390, 2016.

    Article  Google Scholar 

  8. Foin, N., R. D. Lee, R. Torii, et al. Impact of stent strut design in metallic stents and biodegradable scaffolds. Int. J. Cardiol. 177(3):800–808, 2014.

    Article  Google Scholar 

  9. Gastaldi, D., V. Sassi, L. Petrini, et al. Continuum damage model for bioresorbable magnesium alloy devices—application to coronary stents. J. Mech. Behav. Biomed. Mater. 4(3):352–365, 2011.

    Article  Google Scholar 

  10. Grogan, J. A., S. B. Leen, P. E. McHugh, et al. Comparing coronary stent material performance on a common geometric platform through simulated bench testing. J. Mech. Behav. Biomed. Mater. 12:129–138, 2012.

    Article  Google Scholar 

  11. Grogan, J. A., S. B. Leen, and P. E. Mchugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34(33):8049–8060, 2013.

    Article  Google Scholar 

  12. Guerra, A. J., and J. Ciurana. 3D-printed bioabsordable polycaprolactone stent: the effect of process parameters on its physical features. Mater. Des. 137:430–437, 2018.

    Article  Google Scholar 

  13. Guo, M., Z. Chu, J. Yao, et al. The effects of tensile stress on degradation of biodegradable PLGA membranes: a quantitative study. Polym. Degrad. Stab. 124:95–100, 2016.

    Article  Google Scholar 

  14. Hathcock, J. J. Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 26(8):1729, 2006.

    Article  Google Scholar 

  15. Hoffmann, R., G. R. Mintz, K. Kent, et al. Tissue proliferation within and surrounding Palmaz–Schatz stents is dependent on the aggressiveness of stent implantation technique. Am. J. Cardiol. 83(8):1170–1174, 1999.

    Article  Google Scholar 

  16. Kastrati, A., J. Mehilli, J. Dirschinger, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO) trial. Circulation 103(23):2816–2821, 2001.

    Article  Google Scholar 

  17. Li, N., H. Zhang, and H. Ouyang. Shape optimization of coronary artery stent based on a parametric model. Finite Elem. Anal. Des. 45(6):468–475, 2009.

    Article  Google Scholar 

  18. Luo, Q., X. Liu, Z. Li, et al. Degradation model of bioabsorbable cardiovascular stents. PLoS ONE 9(11):e110278, 2014.

    Article  Google Scholar 

  19. McMahon, S., N. Bertollo, E. D. O’Cearbhaill, et al. Bio-resorbable polymer stents: a review of material progress and prospects. Prog. Polym. Sci. 83:79–96, 2018.

    Article  Google Scholar 

  20. Morton, A. C., D. Crossman, and J. Gunn. The influence of physical stent parameters upon restenosis. Pathol. Biol. 52(4):196–205, 2004.

    Article  Google Scholar 

  21. Ong, C. W., P. Ho, and H. L. Leo. Effects of microporous stent graft on the descending aortic aneurysm: a patient-specific computational fluid dynamics study. Artif. Organs 40(11):E230–E240, 2016.

    Article  Google Scholar 

  22. Pache, J., A. Kastrati, J. Mehilli, et al. Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial. Acc. Curr. J. Rev. 41(8):1283–1288, 2003.

    Google Scholar 

  23. Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 11(1–2):61–82, 2012.

    Article  Google Scholar 

  24. Pant, S., G. Limbert, N. P. Curzen, et al. Multiobjective design optimisation of coronary stents. Biomaterials 32(31):7755–7773, 2011.

    Article  Google Scholar 

  25. Samady, H., P. Eshtehardi, M. C. Mcdaniel, et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011.

    Article  Google Scholar 

  26. Schiavone, A., C. Abunassar, S. Hossainy, et al. Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel. J. Biomech. 49(13):2677–2683, 2016. https://doi.org/10.1016/j.jbiomech.2016.05.035.

    Article  Google Scholar 

  27. Waksman, R., and R. Pakala. Biodegradable and bioabsorbable stents. Curr. Pharm. Des. 16(36):4041–4051, 2010.

    Article  Google Scholar 

  28. Wang, W. Q., D. K. Liang, D. Z. Yang, et al. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J. Biomech. 39(1):21–32, 2006.

    Article  Google Scholar 

  29. Wen, J., T. Zheng, W. Jiang, et al. A comparative study of helical-type and traditional-type artery bypass grafts: numerical simulation. ASAIO J. 57(5):399–406, 2011.

    Article  Google Scholar 

  30. Wu, W., S. Chen, D. Gastaldi, et al. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater. 9(10):8730–8739, 2013.

    Article  Google Scholar 

  31. Wu, W., L. D. Petrini, T. Villa, et al. Finite element shape optimization for biodegradable magnesium alloy stents. Ann. Biomed. Eng. 38(9):2829–2840, 2010.

    Article  Google Scholar 

  32. YY/T 0694-2008. Standard test method for elastic retraction of balloon expanding stents. http://183.61.19.162/stdpool/YYT%200694-2008%20%E7%90%83%E5%9B%8A%E6%89%A9%E5%BC%A0%E6%94%AF%E6%9E%B6%E5%BC%B9%E6%80%A7%E5%9B%9E%E7%BC%A9%E7%9A%84%E6%A0%87%E5%87%86%E6%B5%8B%E8%AF%95%E6%96%B9%E6%B3%95.pdf.

Download references

Acknowledgments

This project was supported by Grants-in-Aid from the National key research and development program of China (No. 2017YFB0702503) and Programs of Science & Technology Department of Sichuan Province (Nos. 2018HH0073 & 2018GZ0297).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xiong or Yu Chen.

Additional information

Associate Editor Karen May-Newman oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Xiong, Y., Jiang, W. et al. Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries. Cardiovasc Eng Tech 11, 36–46 (2020). https://doi.org/10.1007/s13239-019-00433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00433-2

Keywords

Navigation