Skip to main content

Advertisement

Log in

Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Bacterial diseases are the main cause of high economic loss in aquaculture, particularly gram-negative bacteria. This study was conducted for the isolation and identification of Aeromonas and Pseudomonas spp. from diseased fish. Twenty-two Aeromonas and sixteen Pseudomonas isolates were recovered from diseased Nile tilapia (Oreochromis niloticus) raised in eight earthen ponds in Elhox, Metoubes, Kafrelsheikh, Egypt. The recovered isolates were further identified using PCR as 22 Aeromonas hydrophila, 11 Pseudomonas aeruginosa, and 5 Pseudomonas fluorescens isolates. The 22 A. hydrophila isolates were screened for the presence of four virulence genes. Sixteen of the isolates (72.72%) were positive for the aerolysin gene (aer); 4 (18.18%) harbored the cytotoxic enterotoxin gene (act); and 2 (9.09%) carried the hemolysin A gene (hylA) while the cytotonic heat–stable enterotoxin gene (ast) was absent from all the tested isolates. The pathogenicity test indicated the direct relationship between the mortality percentage and the genotype of the tested A. hydrophila isolates as the mortality rates were 63.3 and 73.3% for isolates with two virulence genes (aer+ & act+, and aer+ and hylA+, respectively), followed by 40, 53.3, and 56.6% for isolates with only one virulence gene (hylA, act, and aer, respectively) and 20% for isolates lacking virulence genes. Based on the sensitivity test, the multi-antibiotic resistance profiles were as follows: 90.9% of the A. hydrophila isolates were sensitive to florfenicol and doxycycline; then 68.18% were susceptible to oxytetracycline, norfloxacin, and ciprofloxacin; and 63.63% were susceptible to sulfamethoxazole-trimethoprim, while only 27.27 and 4.5% were sensitive to erythromycin and cephradine, respectively, and all the isolates were resistant to amoxicillin and ampicillin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Kader MF, Mousa-Balabel T (2017) Isolation and molecular characterization of some bacteria implicated in the seasonal summer mortalities of farm-raised Oreochromis niloticus at Kafr El-Sheikh and Dakahlia governorates. AJVS 53(2):107–113. https://doi.org/10.5455/ajvs.265631. https://www.ejmanager.com/mnstemps/31/31-1500399545.pdf?t=1549660439. Accessed 18 June 2018

  • Aboyadak IM, Ali NGM, Goda AMAS, Aboelgalagel WH, Alnokrashy AME (2015) Molecular detection of Aeromonas hydrophila as the main cause of outbreak in Tilapia farms in Egypt. J Aquac Mar Biol 2(5):00045. https://doi.org/10.15406/jamb.2015.02.00045

    Article  Google Scholar 

  • Aboyadak IM, Ali NGM, Goda AMA-S, Saad W, Salam AME (2017) Non-selectivity of R-S media for Aeromonas hydrophila and TCBS Media for Vibrio Species isolated from diseased Oreochromis niloticus. J Aquac Res Dev 8:496. https://doi.org/10.4172/2155-9546.1000496

    Article  CAS  Google Scholar 

  • Abulhamd AT (2009) Characterization of Aeromonas hydrophila isolated from aquatic environments using phenotypic and genotyping methods. Res J Agric Biol Sci 5(6):923–931. http://www.aensiweb.net/AENSIWEB/rjabs/rjabs/2009/923-931.pdf. Accessed 20 June 2018

  • Ali NG, Aboyadak IM, Gouda MY (2018) Rapid detection and control of Gram negative bacterial pathogens isolated from summer mortality outbreak affecting tilapia farms. J Biol Sci 19(1):24–33. https://doi.org/10.3923/jbs.2019.24.33

    Article  Google Scholar 

  • Austin B, Austin DA (2016) Bacterial fish pathogens disease of farmed and wild fish, 6th edn. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-32674-0

    Book  Google Scholar 

  • Bektas S, Iscimen S (2016) Antibiotic resistance of Aeromonas hydrophila strains isolated from Karasu Stream (Sinop/Turkey). International Journal of Advances in Agricultural and Environmental Engineering 3(2):269–270. https://doi.org/10.15242/IJAAEE.ER0516026

  • Bosworth BG, Small BC (2004) Effects of transport water temperature, aerator type, and oxygen level on Channel Catfish Ictalurus punctatus fillet quality. J World Aquacult Soc 35(3):412–419

    Article  Google Scholar 

  • Carnevia D, Letamendia M, Perretta A (2013) Pathogenic Gram-negative bacteria isolated from ornamental fish in Uruguay: characterization and antibiotic resistance. Bull Eur Ass Fish Pathol 33(6):181–186. https://eafp.org/download/2013-volume33/issue_6/181-Carnevia.pdf. Accessed 20 Aug 2018

  • CCAC (2005) Guidelines on: the care and use of fish in research, teaching and testing. Canadian Council on Animal Care. 1510–130 Albert Street Ottawa on Canada, K1P 5G4. http://post.queensu.ca/~cdm2/CCACfish.pdf. Accessed 5 April 2017

  • Chacon MR, Figueras MJ, Castro-Escarpulli G, Soler L, Guarro J (2003) Distribution of virulence genes in clinical and environmental isolates of Aeromonas spp. Antonie Van Leeuwenhoek 84:269–278

    Article  CAS  Google Scholar 

  • Chopra AK, Xu XJ, Ribardo D, Gonzalez M, Kuhl K, Peterson JW, Houston CW (2000) The cytotoxic enterotoxin of Aeromonas hydrophila induces proinflammatory cytokine production and activates arachidonic acid metabolism in macrophages. Infect Immun 68(5):2808–2818

    Article  CAS  Google Scholar 

  • CLSI, Clinical and Laboratory Standards Institute (2016) Document M45-A. methods for antimicrobial dilution and disk susceptibility of infrequently isolated or fastidious bacteria; approved guideline. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA

    Google Scholar 

  • Daood N (2012) Isolation and antibiotic susceptibility of Aeromonas spp. from freshwater fish farm and farmed carp (Dam of 16 Tishreen, Lattakia). Damas Univ J Basic Sci 28(1):27–39. http://www.damascusuniversity.edu.sy/mag/asasy/images/stories/1-2012/27-39e.pdf. Accessed 15 May 2018

  • Degiacomi MT, Iacovache I, Pernot L, Chami M, Kudryashev M, Stahlberg H, Goot FG, Peraro MD (2013) Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat Chem Biol 9:623–631. https://doi.org/10.1038/nchembio.1312

    Article  CAS  PubMed  Google Scholar 

  • Emeish WFA, Mohamed HMA, Elkamel AA (2018) Aeromonas infections in African Sharptooth Catfish. J Aquac Res Development 9:548. https://doi.org/10.4172/2155-9546.1000548. https://www.omicsonline.org/open-access/aeromonas-infections-in-african-sharptooth-catfish-2155-9546-1000548.pdf. Accessed 5 Oct 2018

  • FAO (2017) Feeding global aquaculture growth in food and agriculture organization aquaculture newsletter No. 56, pp 2. http://www.fao.org/3/a-i7171e.pdf. Accessed 10 May 2018

  • FAO (2018) Major species production in world aquaculture in: the state of world fisheries and aquaculture 2018 – Meeting the sustainable development goals. Rome, pp 23. http://www.fao.org/3/i9540en/I9540EN.pdf. Accessed 18 May 2018

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61(2):136–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furmanek-Blaszk B (2014) Phenotypic and molecular characteristics of an Aeromonas hydrophila strain isolated from the River Nile. Microbiol Res 169:547–552

    Article  CAS  Google Scholar 

  • Hayati R, Hassan MD, Ong B, Abdelhadi YM, Hidayahanum NH, Sharifah RM, Nora FAM, Kuttichantran S, Alsaid M (2015) Virulence genes detection of Aeromonas hydrophila originated from diseased freshwater fishes. Adv Environ Biol 9(22):22–26. http://www.aensiweb.net/AENSIWEB/aeb/aeb/2015/Special%20IPN%20Bandung%20Sept/22-26.pdf. Accessed 5 March 2018

  • Hossain MJ, Waldbieser GC, Sun D, Capps NK, Hemstreet WB, Carlisle K, Griffin MJ, Khoo L, Goodwin AE, Sonstegard TS, Schroeder S, Hayden K, Newton JC, Terhune JS, Liles MR (2013) Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in Channel Catfish. PLoS One 8(11):80943. https://doi.org/10.1371/journal.pone.0080943

    Article  Google Scholar 

  • Hu M, Wang N, Pan ZH, Lu CP, Liu YJ (2012) Identity and virulence properties of Aeromonas isolates from diseased fish, healthy controls and water environment in China. Lett Appl Microbiol 55:224–233. https://doi.org/10.1111/j.1472-765X.2012.03281.x

    Article  CAS  PubMed  Google Scholar 

  • Iacovache I, Carlo SD, Cirauqui N, Peraro MD, Goot VD, Zuber B (2016) Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat Commun 7:12062. https://doi.org/10.1038/ncomms12062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kingombe CIB, D’Aoust J-Y, Huys G, Hofmann L, Rao M, Kwan J (2010) Multiplex PCR method for detection of three Aeromonas enterotoxin genes. Appl Environ Microbiol 76(2):425–433. https://doi.org/10.1128/AEM.01357-09

    Article  CAS  PubMed  Google Scholar 

  • Krueger CL, Sheikh W (1987) A new selective medium for isolating Pseudomonas spp. from water. Appl Environ Microbiol 53(4):895–897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krumperman PH (1983) Multiple antibiotic indexing of E. coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46(1):165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, Powell EN, Rondeau D, Saksida SM (2015) Infectious diseases affect marine fisheries and aquaculture economics. Annu Rev Mar Sci 7:471–496. https://doi.org/10.1146/annurev-marine-010814-015646

    Article  Google Scholar 

  • Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HC, Tran MT, Tran TT, Southgate PC, Kurtböke DI (2018) Protective effects of bacteriophages against Aeromonas hydrophila causing Motile Aeromonas Septicemia (MAS) in striped catfish. antibiotics 7(16). https://doi.org/10.3390/antibiotics7010016

    Article  Google Scholar 

  • Lee C, Cho JC, Lee SH, Lee DG, Kim SJ (2002) Distribution of Aeromonas spp. as identified by 16S rDNA restriction fragment length polymorphism analysis in a trout farm. J Appl Microbiol 93:976–985. https://doi.org/10.1046/j.1365-2672.2002.01775.x

    Article  CAS  PubMed  Google Scholar 

  • Lee PY, Costumbrado J, Hsu CY, Kim YH (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp (62):1–5, e3923. https://doi.org/10.3791/3923

  • Li J, Ni XD, Liu YJ, Lu CP (2011) Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebra fish. J Appl Microbiol 110(3):823–830

    Article  CAS  Google Scholar 

  • Lowry T, Smith SA (2007) Aquatic zoonoses associated with food, bait, ornamental, and tropical fish. J Am Vet Med Assoc 231:876–880. https://doi.org/10.2460/javma.231.6.876

    Article  PubMed  Google Scholar 

  • NACLAR (2004) NACLAR (2004) National Advisory Committee for Laboratory Animals Research. Guidelines on the care and use of animals for scientific purposes, pp 46–56. http://www3.ntu.edu.sg/Research2/Grants%20Handbook/NACLAR-guide%20Lines.pdf. Accessed 1 April 2017

  • Nawaz M, Khan SA, Khan AA, Sung H, Tran Q, Kerdahi K, Steele R (2010) Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol 27:327–331. https://doi.org/10.1016/j.fm.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  • Noga EJ (2010) Fish disease diagnosis and treatment. Blackwell Publishing, USA

    Book  Google Scholar 

  • Oliveira STL, Veneroni-Gouveia G, Costa MM (2012) Molecular characterization of virulence factors in Aeromonas hydrophila obtained from Fish. Pesqui Vet Bras 32(8):701–706

    Article  Google Scholar 

  • Omar AA, Moustafa EM, Zayed MM (2016) Identification and characterization of virulence-associated genes from pathogenic Aeromonas Hydrophila strains. World Vet J 6(4):185–192

    Article  Google Scholar 

  • Peatman E, Mohammed H, Kirby A, Shoemaker CA, Yildirim-Aksoy M, Beck BH (2018) Mechanisms of pathogen virulence and host susceptibility in virulent Aeromonas hydrophila infections of channel catfish (Ictalurus punctatus). Aquaculture 482:1–8. https://doi.org/10.1016/j.aquaculture.2017.09.019

    Article  Google Scholar 

  • Petty BD (2016) Bacterial Diseases of Fish. In: Aiellos SE (ed) The Merck Veterinary Manual, 11th edn. Merck & Co., Inc., SE Kenilworth, NJ, USA

    Google Scholar 

  • Podobnik M, Kisovec M, Anderluh G (2017) Molecular mechanism of pore formation by aerolysin-like proteins. Philos Trans B 372:20160209. https://doi.org/10.1098/rstb.2016.0209

    Article  Google Scholar 

  • Rasmussen-Ivey CR, Hossain MJ, Odom SE, Terhune JS, Hemstreet WG, Shoemaker CA, Zhang D, Xu D-H, Griffin MJ, Liu Y-J, Figueras MJ, Santos SR, Newton JC, Liles MR (2016) Classification of a hypervirulent Aeromonas hydrophila pathotype responsible for epidemic outbreaks in warm-water fishes. Front Microbiol 7:1615. https://doi.org/10.3389/fmicb.2016.01615

    Article  PubMed  PubMed Central  Google Scholar 

  • Rather MA, Willayat MM, Wani SA, Munshi ZH, Hussain SA (2014) A multiplex PCR for detection of enterotoxin genes in Aeromonas species isolated from foods of animal origin and human diarrhoeal samples. J Appl Microbiol 117:1721–1729

    Article  CAS  Google Scholar 

  • Revina O, Avsejenko J, Cirule D, Valdovska A (2017) Antimicrobial resistance of aeromonas spp. isolated from the sea trout (Salmo trutta l.) in Latvia. Res Rural Dev 1:271–275

    Article  Google Scholar 

  • Ribardo DA, Kuhl KR, Boldogh I, Peterson JW, Houston CW, Chopra AK (2002) Early cell signaling by the cytotoxic enterotoxin of Aeromonas hydrophila in Macrophages. Microb Pathog 32:149–163. https://doi.org/10.1006/mpat.2001.0490

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Saha M, Roy P (2013) Detection of 232bp virulent gene of pathogenic Aeromonas hydrophila through PCR based technique: a rapid molecular diagnostic approach. Adv Microbiol 3:83–87. https://doi.org/10.4236/aim.2013.31013

    Article  CAS  Google Scholar 

  • Scarpellini M, Franzetti L, Galli A (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236:257–260. https://doi.org/10.1016/j.femsle.2004.05.043

    Article  CAS  PubMed  Google Scholar 

  • Sen K, Rodgers M (2004) Distribution of six virulence factors in Aeromonas species isolated from US drinking water utilities: a PCR identification. J Appl Microbiol 97:1077–1086. https://doi.org/10.1111/j.1365-2672.2004.02398.x

    Article  CAS  PubMed  Google Scholar 

  • Sha J, Kozlova EV, Chopra AK (2002) Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxic activity. Infect Immun 70(4):1924–1935

    Article  CAS  Google Scholar 

  • Son R, Rusul G, Sahilah AM, Zainuri A, Raha AR, Salmah I (1997) Antibiotic resistance and plasmid profile of Aeromonas hydrophila isolates from cultured fish, Telapia (Telapia mossambica). Lett Appl Microbiol 24:479–482

    Article  CAS  Google Scholar 

  • Song H-C, Kang Y-H, Zhang D-X, Chen L, Qian A-D, Shan X-F, Li Y (2019) Great effect of porin (aha) in bacterial adhesion and virulence regulation in Aeromonas Veronii. Microb Pathog 126:269–278. https://doi.org/10.1016/j.micpath.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  • Soto-Rodriguez SA, Lozano-Olvera R, Garcia-Gasca MT, Abad-Rosales SM, Gomez-Gil B, Ayala-Arellano J (2018) Virulence of the fish pathogen Aeromonas dhakensis: genes involved, characterization and histopathology of experimentally infected hybrid tilapia. Dis Aquat Org 129:107–116. https://doi.org/10.3354/dao03247

    Article  CAS  PubMed  Google Scholar 

  • Souza CF, Baldissera MD, Guarda NS, Bollick YS, Moresco RN, Brusque ICM, Roberto CV, Santos RCV, Baldisserotto B (2017) Melaleuca alternifolia essential oil nanoparticles ameliorate the hepatic antioxidant/oxidant status of silver catfish experimentally infected with Pseudomonas aeruginosa. Microb Pathog 108:61–65. https://doi.org/10.1016/j.micpath.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  • Spilker T, Coenye T, Vandamme P, LiPuma JJ (2004) PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol 42(5):2074–2079

    Article  CAS  Google Scholar 

  • Stratev D, Odeyemi OA (2015) Antimicrobial resistance of Aeromonas hydrophila isolated from different food sources: a mini-review. J Infect Public Health 9:535–544. https://doi.org/10.1016/j.jiph.2015.10.006

    Article  PubMed  Google Scholar 

  • Tito MT, Rodrigues ND, Coelho SD, Souza MM, Zonta E, Coelho ID (2015) Choice of DNA extraction protocols from Gram negative and positive bacteria and directly from the soil. Afr J Microbiol Res 9(12):863–871. https://doi.org/10.5897/AJMR2014.7259

    Article  CAS  Google Scholar 

  • Tohamy HG, El-Manakhly E-SM, Mohamed FAS, Massoud RG (2015) Pathological evaluation of experimental Pseudomonas fluorescens infection in Nile tilapia. WJFMS 7(6):450–457. https://www.idosi.org/wjfms/wjfms7(6)15/7.pdf. Accessed 3 Aug 2018

  • Tomas JM (2012) The main Aeromonas pathogenic factors. ISRN Microbiol 2012:256261–256222. https://doi.org/10.5402/2012/256261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trakhna F, Harf-Monteil C, AbdelNour A, Maaroufi A, Gadonna-Widehem P (2009) Rapid Aeromonas hydrophila identification by TaqMan PCR assay: comparison with a phenotypic method. Lett Appl Microbiol 49:186–190. https://doi.org/10.1111/j.1472-765X.2009.02635.x

    Article  CAS  PubMed  Google Scholar 

  • Vivekanandhan G, Savithamani K, Hatha AAM, Lakshmanaperumalsamy P (2002) Antibiotic resistance of Aeromonas hydrophila isolated from marketed fish and prawn of south India. Int J Food Microbiol 76:165–168

    Article  CAS  Google Scholar 

  • Wu H-j, Wang AH-J, Jennings MP (2008) Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 12:1–9. https://doi.org/10.1016/j.cbpa.2008.01.023

    Article  CAS  Google Scholar 

  • Xu XJ, Ferguson MR, Popov VL, Houston CW, Peterson JW, Chopra AK (1998) Role of a cytotoxic enterotoxin in Aeromonas-mediated infections: development of transposon and isogenic mutants. Infect Immun 66:3501–3509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Li N, Li M, Zhang D, An G (2016) Complete genome sequence of fish pathogen Aeromonas hydrophila JBN2301. Genome Announcement 4(1):01615–01615. https://doi.org/10.1128/genomeA.01615-15

    Article  Google Scholar 

  • Yogananth N, Bhakyaraj R, Chanthuru A, Anbalagan T, Nila KM (2009) Detection of virulence gene in Aeromonas hydrophila isolated from fish samples using PCR technique. GJBB 4(1):51–53. http://www.idosi.org/gjbb/gjbb4%281%2909/9.pdf. Accessed 2 Sept 2018

  • Yousr AH, Napis S, Rusul GRA, Son R (2007) Detection of aerolysin and hemolysin genes in Aeromonas spp. isolated from environmental and shellfish sources by Polymerase Chain Reaction. ASEAN Food J 14(2):115–122. https://www.researchgate.net/publication/237723263. Accessed 20 Aug 2018

  • Zheng W, Cao H, Yang X (2012) Grass carp (Ctenopharyngodon idellus) infected with multiple strains of Aeromonas hydrophila. Afr JMicrobiol Res 6(21):4512–4520. https://doi.org/10.5897/AJMR11.1405. http://www.academicjournals.org/app/webroot/article/article1380712634_Zheng%20et%20al.pdf. Accessed 30 June 2018

  • Zhu D, Aihua L, Jianguo W, Ming L, Taozhen C, Jing H (2007) Correlation between the distribution pattern of virulence genes and virulence of Aeromonas hydrophila strains. Frontiers of Biology in China 2(2):176–179. https://doi.org/10.1007/s11515-007-0024-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Gabr Ali.

Ethics declarations

The fish used in the current research were handled, transported, and examined following the guidelines of the National Advisory Committee for Laboratory Animals Research (NACLAR 2004) and CCAC (2005) for the care and use of fish in research, teaching, and testing which were applied by the NIOF ethical committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bahar, H.M., Ali, N.G., Aboyadak, I.M. et al. Virulence genes contributing to Aeromonas hydrophila pathogenicity in Oreochromis niloticus. Int Microbiol 22, 479–490 (2019). https://doi.org/10.1007/s10123-019-00075-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00075-3

Keywords

Navigation