Skip to main content

Advertisement

Log in

Detection of vancomycin nonsusceptible strains in clinical isolates of Staphylococcus aureus in northern Iran

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Glycopeptides, particularly the cell wall-acting antibiotic vancomycin, are the safest cure for methicillin-resistant Staphylococcus aureus. The aim of this study was to evaluate nonsusceptibility of clinical isolates of S. aureus to vancomycin and investigate mutations in vraSR, a cell wall synthesis regulator gene, in vancomycin-resistant strains. Susceptibility of 110 clinical strains of S. aureus to methicillin and vancomycin were determined using disc diffusion method and determination of minimum inhibitory concentration, respectively. Presence of mecA and vanA genes was determined by PCR. Determination of spa types and mutations of the vraSR gene in vancomycin nonsusceptible isolates were assessed by PCR-sequencing analyses. In total, 47 isolates (42.73%) were recognized as MRSA, three (2.73%) strains were resistant to vancomycin, and eight (7.27%) strains were vancomycin intermediates. The MIC of vancomycin was 4–64 μg/ml in these isolates. All vancomycin nonsusceptible S. aureus strains were mecA positive and one isolate was positive for the vanA gene. Spa type t030 was found as the most common type. In vraSR sequence analysis, all 11 vancomycin nonsusceptible isolates had the D59E mutation in the vraR and E45G in vraS genes. R117H, R121S, and R121I are the other identified missense mutations in the vraR gene. The identification of a high percentage of MRSA and presence of VRSA and VISA isolates is a serious warning about the treatment of future MRSA infections and reveals the need for new and effective therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Azimian A, Havaei SA, Fazeli H, Naderi M, Ghazvini K, Samiee SM, Soleimani M, Peerayeh SN (2012) Genetic characterization of a vancomycin-resistant Staphylococcus aureus isolate from the respiratory tract of a patient in a university hospital in northeastern Iran. J Clin Microbiol 50(11):3581–3585

    Article  Google Scholar 

  • Baseria N, Najar-Peerayeha S, Bagheri Amirib F (2018) Prevalence of vancomycin-intermediate Staphylococcus aureus among clinical isolates in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 15:178–187

    Article  Google Scholar 

  • Boyle-Vavra S, Yin S, Daum RS (2006) The VraS/VraR two-component regulatory system required for oxacillin resistance in community-acquired methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 262(2):163–171

    Article  CAS  Google Scholar 

  • Cui L, Neoh HM, Shoji M, Hiramatsu K (2009) Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 53(3):1231–1234

    Article  CAS  Google Scholar 

  • Dadashi M, Nasiri MJ, Fallah F, Owlia P, Hajikhani B, Emaneini M, Mirpour M (2018) Methicillin-resistant Staphylococcus aureus (MRSA) in Iran: a systematic review and meta-analysis. J Glob Antimicrob Resist 12:96–103

    Article  Google Scholar 

  • Galbusera E, Renzoni A, Andrey DO, Monod A, Barras C, Tortora P, Polissi A, Kelley WL (2011) Site-specific mutation of Staphylococcus aureus VraS reveals a crucial role for the VraR-VraS sensor in the emergence of glycopeptide resistance. Antimicrob Agents Chemother 55(3):1008–1020

    Article  CAS  Google Scholar 

  • Gardete S, Wu SW, Gill S, Tomasz A (2006) Role of VraSR in antibiotic resistance and antibiotic-induced stress response in Staphylococcus aureus. Antimicrob Agents Chemother 50(10):3424–3434

    Article  CAS  Google Scholar 

  • Goetghebeur M, Landry PA, Han D, Vicente C (2007) Methicillin-resistant Staphylococcus aureus: a public health issue with economic consequences. Can J Infect Dis Med Microbiol 18(1):27–34

    Article  Google Scholar 

  • Hamdan-Partida A, Sainz-Espuñes T, Bustos-Martínez J (2010) Characterization and persistence of Staphylococcus aureus strains isolated from the anterior nares and throats of healthy carriers in a Mexican community. J Clin Microbiol 48(5):1701–1705

    Article  Google Scholar 

  • Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350(9092):1670–1673

    Article  CAS  Google Scholar 

  • Hiramatsu K, Kayayama Y, Matsuo M, Aiba Y, Saito M, Hishinuma T, Iwamoto A (2014) Vancomycin-intermediate resistance in Staphylococcus aureus. J Glob Antimicrob Resist 2(4):213–224

    Article  Google Scholar 

  • Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101(26):9786–9791

    Article  CAS  Google Scholar 

  • Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML (2010) Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev 23(1):99–139

    Article  CAS  Google Scholar 

  • Kato Y, Suzuki T, Ida T, Maebashi K, Sakurai M, Shiotani J, Hayashi I (2008) Microbiological and clinical study of methicillin-resistant Staphylococcus aureus (MRSA) carrying VraS mutation: changes in susceptibility to glycopeptides and clinical significance. Int J Antimicrob Agents 31(1):64–70

    Article  CAS  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49(3):807–821

    Article  CAS  Google Scholar 

  • Leonard PG, Golemi-Kotra D, Stock AM (2013) Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc Natl Acad Sci 110(21):8525–8530

    Article  CAS  Google Scholar 

  • McAleese F, Wu SW, Sieradzki K, Dunman P, Murphy E, Projan S, Tomasz A (2006) Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin intermediate S. aureus type resistance to vancomycin. J Bacteriol 188(3):1120–1133

    Article  CAS  Google Scholar 

  • Moubareck C, Meziane-Cherif D, Patrice Courvalin P, Périchon B (2009) VanA-type Staphylococcus aureus strain VRSA-7 is partially dependent on vancomycin for growth. Antmicrob Agents Chemother 53(9):3657–3663

    Article  CAS  Google Scholar 

  • Najar-Peerayeh S, Mirzaee M, Behmanesh M (2016) Molecular characterization of vancomycin-intermediate Staphylococcus aureus isolates from Tehran. Asian Pac J Trop Dis 6(9):726–731

    Article  Google Scholar 

  • Paniagua-Contreras G, Sáinz-Espuñes T, Monroy-Pérez E, Rodríguez-Moctezuma JR, Arenas-Aranda D, Negrete-Abascal E et al (2012) Virulence markers in Staphylococcus aureus strains isolated from hemodialysis catheters of Mexican patients. Adv Microbiol 2(04):476–487

    Article  Google Scholar 

  • Périchon B, Courvalin P (2009) VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53(11):4580–4587

    Article  Google Scholar 

  • Robinson DA, Enright MC (2004) Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 10(2):92–97

    Article  CAS  Google Scholar 

  • Tiwari KB (2009) Vancomycin resistance in Staphylococcus aureus may occur faster than expected. Int J Life Sci 3

  • Worthington RJ, Blackledge MS, Melander C (2013) Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem 5(11):1265–1284

    Article  CAS  Google Scholar 

  • Yousefi M, Fallah F, Arshadi M, Pourmand MR, Hashemi A, Pourmand G (2017) Identification of tigecycline and vancomycin resistant Staphylococcus aureus strains among UTI patients in Iran. New Microbes New Infect 24:8–12

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Islamic Azad University, Rasht Branch, Rasht, Iran, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Asadpour.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadpour, L., Ghazanfari, N. Detection of vancomycin nonsusceptible strains in clinical isolates of Staphylococcus aureus in northern Iran. Int Microbiol 22, 411–417 (2019). https://doi.org/10.1007/s10123-019-00063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-019-00063-7

Keywords

Navigation