Skip to main content

Advertisement

Log in

Monte Carlo investigation of electron specific energy distribution in a single cell model

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Knowledge of microdosimetric quantities of certain radionuclides is important in radio immune cancer therapies. Specific energy distribution of radionuclides, which are bound to the cell, is the microdosimetric quantity essential in the process of radionuclide selection for patient tumour treatment. The aim of this paper is to establish an applicable method to determine microdosimetric quantities for various radionuclides. The established method is based on knowledge of microdosimetric quantities of monoenergetic electrons. In this paper these quantities are determined for the single-cell model for a range of electron energies up to \(2.3\,{\text{MeV}}\), using the Monte Carlo transport code PENELOPE. The results show that using monoenergetic specific energies, reconstruction of the specific energy of beta-emitting radionuclides can be successfully done with very high accuracy. Microdosimetric quantities share information about the physical processes involved and give insight about energy depositions, which is of use in the procedure of radionuclide selection for a given type of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Asuero AG, Sayago A, Gonzales AG (2006) The correlation coefficient: an overview. Crit Rev Anal Chem 36:41–59

    Article  Google Scholar 

  • Bloch WE, Kim EH (1994) Calculations of electron single event distributions for use in internal beta microdosimetry. Radiat Prot Dosim 52:77–80

    Article  Google Scholar 

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H, Pathak A (2008) Electron ionization cross-section calculations for liquid water at high impact energies. Nucl Inst Met Phys Res B 266:1185–1192

    Article  ADS  Google Scholar 

  • Bousis C, Emfietzoglou D, Hadjidoukas P, Nikjoo H (2010) Monte Carlo single-cell dosimetry of Auger-electron emitting radionuclides. Phys Med Biol 55:2555–2572

    Article  Google Scholar 

  • Bousis C, Emfietzoglou D, Nikjoo H (2012) Monte Carlo single cell dosimetry of I-131, I-125 and I-123 for targeted radioimmunotherapy of B-cell lymphoma. Int J Radiat Biol 88:908–915

    Article  Google Scholar 

  • Brahme A (2011) Accurate description of the cell survival and biological effectat low and high doses and LET’s. J Radiat Res 52:389–407

    Article  Google Scholar 

  • Cowan G (1998) Statistical data analysis. Clarendon Press, Oxford

    Google Scholar 

  • Dash A, Knapp FF, Pillai MR (2013) Targeted radionuclide therapy—an overview. Curr Radiopharm 6(3):152–180

    Article  Google Scholar 

  • Dingfelder M, Hantke D, Inokuti M, Paretzke HG (1998) Electron inelastic-scattering cross sections in liquid water. Radiat Phys Chem 53:1–18

    Article  ADS  Google Scholar 

  • El-Ghossain MO (2017) Calculations of stopping power and range of electrons interaction with different material and human body parts. Int J Sci Tech Res 6:114–118

    Google Scholar 

  • Fernández-Varea JM, González-Muñoz G, Galassi ME, Wiklund K, Lind BK, Ahnesjö A, Tilly N (2012) Limitations (and merits) of PENELOPE as a track-structure code. Int J Radiat Biol 88:66–70

    Article  Google Scholar 

  • Friesen C, Lubatschofski A, Kotzerke J, Buchmann I, Reske SN, Debatin KM (2003) Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur J Nucl Med Mol Imaging 30:1251–1261

    Article  Google Scholar 

  • Humm JL, Roeske JC, Fisher DR, Chen GT (1993) Microdosimetric concepts in radioimmunotherapy. Med Phys 20:535–541

    Article  Google Scholar 

  • ICRU Report 36 (1983) Microdosimetry. Washington, DC

  • Itikawa Y, Mason N (2005) Cross sections for electron collisions with water. Mol J Phys Chem Ref Data 34:1–22

    Article  ADS  Google Scholar 

  • Kassis AI (2008) Therapeutic, radionuclides: biophysical and radiobiologic principles. Semin Nucl Med 38:358–366

    Article  Google Scholar 

  • Kellerer AM (1985) Fundamentals of microdosimetry. In: Kase RK, Bjarngard EB, Attix FH (eds) The dosimetry of ionizing radiation, vol 1. Academic Press, New York

    Google Scholar 

  • Li WB, Hofmann W, Friedland W (2018) Microdosimetry and nanodosimetry for internal emitters. Radiat Meas 115:29–42

    Article  Google Scholar 

  • Markovic VM, Stevanovic N, Nikezic D, DzF Pucic, Urosevic V (2014) Specific energy distribution within cytoplasm and nucleoplasm of a typical mammalian cell due to various beta radionuclides. J Radioanal Nucl Chem 299:1723–1730

    Article  Google Scholar 

  • Milenic DE, Brechbiel MW (2004) Targeting of radioisotopes for cancer therapy. Cancer Biol Ther 3:361–370

    Article  Google Scholar 

  • Milenic DE, Brady ED, Brechbiel MW (2004) Antibody-targeted radiation cancer therapy. Nature Rev Drug Discov 3:488–498

    Article  Google Scholar 

  • Rossi H, Zaider M (1996) Microdosimetry and its applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Salvat F, Fernández-Varea JM, Sempau J (2006) PENELOPE—2006 a code system for Monte Carlo simulation of electron and photon transport. OECD Nuclear Energy Agency, Issy-les-Moulineaux

  • Stewart RD, Wilson WE, McDonald JC, Strom DJ (2002) Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system. Phys Med Biol 47:79–88

    Article  Google Scholar 

  • Syme AM, Kirkby C, Riauka TA, Fallone BG, McQuarrie SA (2004) Monte Carlo investigation of single cell beta dosimetry for intraperitoneal radionuclide therapy. Phys Med Biol 49:1959–1972

    Article  Google Scholar 

  • Torres-Garcia E, Garnica-Garza HM, Ferro-Flores G (2006) Monte Carlo microdosimetry 188Re- and 131I-labelled anti-CD2. Phys Med Biol 51:N349–N356

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia through the project 171021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Markovic.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovic, V.M., Stevanovic, N. & Nikezic, D. Monte Carlo investigation of electron specific energy distribution in a single cell model. Radiat Environ Biophys 59, 161–171 (2020). https://doi.org/10.1007/s00411-019-00815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-019-00815-z

Keywords

Navigation