Skip to main content
Log in

Cell membrane fatty acid and pigment composition of the psychrotolerant cyanobacterium Nodularia spumigena CHS1 isolated from Hopar glacier, Pakistan

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

In the present study, cyanobacterium isolate CHS1 isolated from Hopar glacier, Pakistan, was analyzed for the first time for cell membrane fatty acids and production of pigments. Sequencing of the 16-23S intergenetic region confirmed identification of the isolate CHS1 as Nodularia spumigena. All chlorophyll and carotenoid pigments were quantified using high-performance liquid chromatography and experiments to test tolerance against a range of physico-chemical conditions were conducted. Likewise, the fatty acid profile of the cell membrane CHS1 was analyzed using gas chromatography and mass spectroscopy. The cyanobacterium isolate CHS1 demonstrated tolerance to 8 g/L% NaCl, 35°C and pH 5–9. The characteristic polyunsaturated fatty acid (PUFA) of isolate CHS1, C18:4, was observed in fatty acid methyl esters (FAMEs) extracted from the cell membrane. CHS1 was capable of producing saturated fatty acids (SFA) (e.g., C16:0), monounsaturated fatty acids (MUFA) (e.g., C18:1) and polyunsaturated fatty acids (e.g., C20:5) in the cell membrane. In this study, we hypothesize that one mechanism of cold adaptation displayed by isolate CHS1 is the accumulation of high amounts of PUFA in the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aplin THE, Main DC (1974) Toxic water blooms. Western Australian Department of Agriculture, Bulletin 3940

  • Abd El Razak A, Ward AC, Glassey J (2014) Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production. Microb Ecol 67:454–464

    CAS  PubMed  Google Scholar 

  • Baker PD (1992) Identification of common noxious cyanobacteria. Part II—Chroococcales and Oscillatoriales. Urban Water Res Assoc Aust Res Rep 46:139

    Google Scholar 

  • Barker GL, Handley BA, Vacharapiyasophon P, Stevens JR, Hayes PK (2000) Allele–specific PCR shows that genetic exchange occurs among genetically diverse Nodularia (Cyanobacteria) filaments in the Baltic Sea. Microbiol 146:2865–2875

    CAS  Google Scholar 

  • Blackburn SI, McCausland MA, Bolch CJS, Newman SJ, Jones GJ (1996) Effect of salinity on growth and toxin production in cultures of the bloom–forming cyanobacterium Nodularia spumigena from Australian waters. Phycol 35:511–522

    Google Scholar 

  • Bolch CJS, Jones PTOGJ, Blackburn SI (1999) Genetic, morphological, and toxicological variation among globally distributed strains of Nodularia (Cyanobacteria). J Phycol 35:339–355

    CAS  Google Scholar 

  • Broady PA (1982) Taxonomy and ecology of algae in a freshwater stream in Taylor Valley, Victoria Land, Antarctica. Arch Hydrobiol 32:331–349

    Google Scholar 

  • Chrismas NAM, Anesio AM, Sánchez-Baracaldo P (2015) Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach. Front Microbiol 6:1070

    PubMed Central  PubMed  Google Scholar 

  • Congestri R, Capucci E, Albertano P (2003) Morphometric variability of the genus Nodularia (Cyanobacteria) in the Baltic natural communities. Aquat Microb Ecol 32:251–259

    Google Scholar 

  • da Silveiraa SB, Wasieleskya W, Andreoteb APD, Fioreb MF, Odebrecht C (2017) Morphology, phylogeny, growth rate and nodularin production of Nodularia spumigena from Brazil. Mar Biol Res 13:1095–1107

    Google Scholar 

  • DeSmet WH, Van Rompu EA (1994) Rotifera and tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg J Zool 124(1):27–37

    Google Scholar 

  • Edwards A, Mur LAJ, Girdwood SE, Anesio AM, Stibal M, Rassner SME, Sattler B (2014) Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers. FEMS Microbiol Ecol 89:222–237

    CAS  PubMed  Google Scholar 

  • Golden JW, Carrasco CD, Mulligan ME, Schneider GJ, Haselkorn R (1988) Deletion of a 55–kilobase–pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol 170:5034–5041

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorokhova E, Engström-Öst J (2009) Toxin concentration in Nodularia spumigena is modulated by mesozooplankton grazers. J Plankton Res 31(10):1235–1247

    CAS  Google Scholar 

  • Gronlund L, Kononen K, Lahdes E, Makela K (1996) Community development and modes of phosphorus utilization in a late summer ecosystem in the central Gulf of Finland, the Baltic Sea. Hydrobiol 331:97–108

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henriksen P (2005) Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments—A case study from the Baltic entrance area. Harmful Algae 4:167–178

    CAS  Google Scholar 

  • Hoham RW, Duval B (2001) Microbial ecology of snow and freshwater ice. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW (eds) Snow ecology. Cambridge University Press, Cambridge, pp 168–228

    Google Scholar 

  • Hong JW, Choi H, Kang S, Yoon H (2010) Axenic purification and cultivation of an arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae–based biofuel. Algae 25(2):99–104

    Google Scholar 

  • Huber AL (1986) Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 1: Field studies and the contribution of blooms to the Nitrogenbudget of the Peel-Harvey estuary, western Australia. Hydrobiol 131:193–203

    CAS  Google Scholar 

  • Huber AL (1985) Factors affecting the germination of akinetes of Nodularia spumigena (Cyanobacteriaceae). Appl Environ Microbiol 49:73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria. Microbiol 146:1275–1286

    CAS  Google Scholar 

  • John J, Kemp A (2006) Cyanobacterial blooms in the wetlands of the Perth region, taxonomy and distribution: an overview. J R Soc West Aust 89:51–56

    Google Scholar 

  • Jones GJ, Blackburn SI, Parker NS (1994) A toxic bloom of Nodularia spumigena Mertens in Orielton Lagoon, Tasmania. Aust J Mar Freshw Res 45:787–800

    CAS  Google Scholar 

  • Jüirgens UJ, Weckesser J (1985) Carotenoid–containing outer membrane of Synechocystis sp. strain PCC 6714. J Bacteriol 164:384–389

    Google Scholar 

  • Jungblut AD, Lovejoy C, Vincent WF (2010) Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J 4:191–202

    CAS  PubMed  Google Scholar 

  • Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. Antarct Res Ser 62:93–110

    Google Scholar 

  • Karjalainen M, Engström-Öst J, Korpinen S, Peltonen H, Pääkkönen JP, Rönkkönen S, Suikkanen S, Viitasalo M (2007) Ecosystem consequences of cyanobacteria in the northern Baltic Sea. Ambio 36:195–202

    CAS  PubMed  Google Scholar 

  • Kenyons CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue–green algae. Arch Microbiol 83:216–236

    Google Scholar 

  • Komarek J (2013) Cyanoprokaryota – 3. Part 3: Heterocystous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa. Springer, Heidelberg, pp 904–919

    Google Scholar 

  • Komarek J, Hubel M, Hubel H, Smarda J (1993) The Nodularia studies 2 Taxonomy. Algol Stud 68:1–25

    Google Scholar 

  • Laamanen MJ, Gugger MF, Lehtimaki JM, Haukka K, Sivonen K (2001) Diversity of toxic and nontoxic Nodularia Isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol 1:4638–4647

    Google Scholar 

  • Lehtimaki J, Lyra C, Suomalainen S, Sundman P, Rouhiainen L, Paulin L, Salkinoja-Salonen M, Sivonen K (2000) Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50:1043–1053

    CAS  PubMed  Google Scholar 

  • Lehtimaki J, Sivonen K, Luukkainen R, Niemela SI (1994) The effect of incubation time, light, salinity, and phosphorus on growth and hepatotoxin production by Nodularia strains. Arch Hydrobiol 130:269–282

    CAS  Google Scholar 

  • Lepere C, Wilmotte A, Meyer B (2000) Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rDNA sequences. Syst Geogr Plants 70:275–283

    Google Scholar 

  • Los DA (2004) The effect of low–temperature–induced DNA supercoiling on the expression of the desaturase genes in Synechocystis. Cell Mol Biol 50:605–612

    CAS  PubMed  Google Scholar 

  • Los DA, Mironov KS (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5(1):554–567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lund P, Tramonti A, Biase DD (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38(6):1091–1125

    CAS  PubMed  Google Scholar 

  • Main DC, Berry PH, Peet RL, Robertson JP (1977) Sheep mortalities associated with the blue–green alga Nodularia spumigena. Aust Vet J 53:578–581

    CAS  PubMed  Google Scholar 

  • Mazur–Marzec H, Kaczkowska MJ, Blaszczyk A, Akcaalan R, Spoof L, Meriluoto J (2013) Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar Drugs 11:1–19

    Google Scholar 

  • Mazur–Marzec H, Zeglinska L, Plinski M (2005) The effect of salinity on the growth, toxin production, and morphology of Nodularia spumigena isolated from the Gulf of Gdansk, southern Baltic Sea. J Appl Phycol 17:171–179

    Google Scholar 

  • McGregor GB, Stewart I, Sendall BC, Sadler R et al (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub–tropical Australia. I. Phycological and public health investigations. Int J Environ Res Public Health 9:2396–2411

    PubMed Central  PubMed  Google Scholar 

  • McKnight DM, Alger A, Tate CM, Shupe G, Spaulding SA (1998) Longitudinal patterns in algal abundance and species distribution in meltwater streams in Taylor Valley, southern Victoria Land, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 109–127

    Google Scholar 

  • Mohlin M, Wulff A (2009) Interaction effects of ambient UV radiation and nutrient limitation on the toxic cyanobacterium Nodularia spumigena. Microb Ecol 57:675–686

    PubMed  Google Scholar 

  • Moisander PH, McClinton E, Pearl HW (2002) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    CAS  PubMed  Google Scholar 

  • Murata N (1989) Low temperature effects on cyanobacterial membranes. J Bioenerg Biomembr 21(1):61–75

    CAS  PubMed  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murata N, Nishida I (1987) Lipids of blue–green algae (cyanobacteria). In: Stumpf PK (ed) The Biochemistry of plants, vol 9. Academic Press, Orlando, pp 315–347

    Google Scholar 

  • Mwnv DC, Berry PH, Peer RL, Roeeersox JP (1977) Sheep mortalities associated with the blue–green alga Nodularia spumigena. Aust vet J 53:578

    Google Scholar 

  • Nordin RN, Stein JR (1980) Taxonomic revision of Nodularia (Cyanophyceae/ Cyanobacteria). Can J Bot 58:1211–1224

    Google Scholar 

  • Nubel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oliva MG, Lugo A, Alcocer J, Peralata L, Oseguera LA (2009) Planktonic bloom–forming Nodularia in the saline Lake Alchichica, Mexico. Nat Resour Environ Issues 15:121–126

    Google Scholar 

  • Omata T, Murat N (1985) Electron–transport reactions in cytoplasmic and thylakoid membranes prepared from the cyanobacteria (blue–green algae) Anacystis nidulans and Synechocystis PCC 6714. Biochim Biophys Acta 810:354–361

    CAS  Google Scholar 

  • Omata T, Murata N (1984) Isolation and characterization of plasma membranes from cyanobacteria. Arch Microbial 139:113–116

    CAS  Google Scholar 

  • Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717(2):67–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    CAS  Google Scholar 

  • Ploug H (2008) Cyanobacterial aggregates formed by Aphanizomenon sp. and Nodularia spumigena in the Baltic Sea: small–scale fluxes, pH and oxygen microenvironments. Limnol Oceanogr 53:914–921

    CAS  Google Scholar 

  • Ploug H, Adam B, Musat N, Kalvelage T, Lavik G, Wolf-Gladrow D, Kuypers MMM (2011) Carbon, nitrogen and O2 fluxes associated with the cyanobacterium Nodularia spumigena in the Baltic Sea. ISME J 5:1549–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F (2017) Recovery of metallo–tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS ONE 12:56–61

    Google Scholar 

  • Reakova K, Mareš J, Lukkešová A, Zapomelová E, Bernardová K, Hrouzek P (2014) Nodularia (Cyanobacteria, Nostocaceae): a phylogenetically uniform genus with variable phenotypes. Phytotaxa 172:235–246

    Google Scholar 

  • Resch CM, Gibson J (1983) Isolation of the carotenoid–containing cell wall of three unicellular cyanobacteria. J Bacterial 155:345–350

    CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdmann M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Runnegar MTC, Jackson ARB, Falconer IR (1988) Toxicity of the cyanobacterium Nodularia spumigena. Mertens Toxicon 26:143–151

    CAS  PubMed  Google Scholar 

  • Salomon PS, Janson S, Granéli E (2003) Molecular identification of bacteria associated with filaments of Nodularia spumigena and their effect on the cyanobacterial growth. Harmful Algae 2:261–272

    Google Scholar 

  • Sato N, Murata N (1980) Temperature shift–induced responses in lipids in the blue–green alga, Anabaena variabilis. Biochim Biophys Acta 619:353–366

    CAS  PubMed  Google Scholar 

  • Segawa T, Yonezawa T, Edwards A, Akiyoshi A, Tanaka S et al (2017) Biogeography of cryoconite forming cyanobacteria on polar and Asian glaciers. J Biogeogr 44:2849–2861

    Google Scholar 

  • Segawa T, Miyamoto K, Ushida K, Agata K, Okada N, Kohshima S (2005) Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real–time PCR. Appl Environ Microbiol 71:123–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha RP, Hader DP (2008) UV–protectants in cyanobacteria. Plant Sci 174:278–289

    CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & IN Spon, London, pp 41–111

    Google Scholar 

  • Sivonen K, Kononen K, Carmichael W, Dahlem AM, Rinehart KL, Kiviranta J, Niemela SI (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl Environ Microbiol 55:1990–1995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sotton B, Domaizon I, Anneville O, Cattanéo F, Guillard J (2015) Nodularin and cylindrospermopsin: A review of their effects on fish. Rev Fish Biol Fisher 25:1–19

    Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    CAS  PubMed  Google Scholar 

  • Suikkanen S, Kaartokallio H, Hallfors S, Huttunen M, Laamanen M (2010) Life cycle strategies of bloom–forming, filamentous cyanobacteria in the Baltic Sea. Deep Sea Res II 57:199–209

    CAS  Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M (2007) Long–term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci 71:580–592

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2– Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400:554–557

    CAS  PubMed  Google Scholar 

  • Takeuchi N (2001) The altitudinal distribution of snow algae on an Alaskan glacier (Gulkana Glacier in the Alaska Range). Hydr Process 15:3447–3459

    Google Scholar 

  • Takeuchi N, Kohshima S, Goto-Azuma K, Koerner RM (2001a) Biological characteristics of dark–colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Natl Inst Polar Res Mem 54:495–505

    Google Scholar 

  • Takeuchi N, Kohshima S, Shiraiwa T, Kubota K (2001b) Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier Southern Patagonia Icefield. Bull Glaciol Res 18:65–69

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis Version 6.0. Mol Biol Evol 30(12):2725–2729

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balthazart P, Hodgson DA, LaybournParry J, Wilmotte A (2006a) Biogeographical distribution and ecological range of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, De Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taton A, Grubisic S, Ertz D, Hodgson DA, Piccardi R, Biondi N et al (2006b) Polyphasic study of Antarctic cyanobacterial strains. J Phycol 42:1257–1270

    CAS  Google Scholar 

  • Taton A, Hoffmann L, Wilmotte A (2008) Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica)—a microscopical approach. Algol Stud 126:173–208

    Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006c) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    CAS  PubMed  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, DAgata C, Vaughan–Martini CSA (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microbiol Ecol 63:73–83

    CAS  PubMed  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol 11:13–52

    CAS  Google Scholar 

  • Uetake J, Naganuma T, Hebsgaard MB, Kanda H, Kohshima S (2010) Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci 4:71–80

    Google Scholar 

  • Van Heukelem L, Thomas CS (2001) Computer–assisted high performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J Chromatogr A 910:31–49

    PubMed  Google Scholar 

  • Villafane VE, Sundbäck K, Figueroa FL, Helbling WE (2003) Photosynthesis in the aquatic environment as affected by ultraviolet radiation. In: Helbling WE, Zagarese H (eds) UV effects in aquatic organisms and ecosystems Comprehensive Series in Photosciences. Royal Society of Chemistry Cambridge, Cambridge, pp 357–398

    Google Scholar 

  • Vincent WF(2000) Cyanobacterial dominance in the polar regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Springer, Dordrecht.

    Google Scholar 

  • Vincent WF, Mueller DR, Bonilla S (2004) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiol 48:103–112

    Google Scholar 

  • Wada H, Murata N (1990) Temperature–induced changes in the fatty acid composition of the Cyanobacterium, Synechocystis PCC68031. Plant Physiol 30:971–978

    Google Scholar 

  • Wasmund N (1997) Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int. Revue Ges Hydrobiol 82(2):169–184

    Google Scholar 

  • Wilmotte A (1994) Molecular evolution and taxonomy of the cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Amsterdam, pp 1–25

    Google Scholar 

  • Wilmotte A, Van der Auwera G, De Wachter R (1993) Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (Mastigocladus laminosus HTF’) strain PCC7518, and phylogenic analysis. FEMS Lett 317:96–100

    CAS  Google Scholar 

  • Wulff A, Mohlin M, Sundback K (2007) Intraspecific variation in the response of the cyanobacterium Nodularia spumigena to moderate UV–B radiation. Harmful Algae 6:388–399

    CAS  Google Scholar 

  • Zakhia F, Jungblut AD, Taton A, Vincent WF, Wilmotte A (2007) Cyanobacteria in cold environments. In: Margesin R, Schinner F, Marx JC, Gerday C (eds) Psychrophiles: from biodiversity to biotechnology. Springer, Berlin, pp 121–135

    Google Scholar 

Download references

Acknowledgements

The research work was financially supported by Commonwealth Scholarship Commission, United Kingdom. In addition, NERC Life Sciences Mass Spectrometry Facility, School of Chemistry, University of Bristol, also supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fariha Hasan.

Additional information

Communicated by S. Albers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, N., Anesio, A.M., Rafiq, M. et al. Cell membrane fatty acid and pigment composition of the psychrotolerant cyanobacterium Nodularia spumigena CHS1 isolated from Hopar glacier, Pakistan. Extremophiles 24, 135–145 (2020). https://doi.org/10.1007/s00792-019-01141-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-019-01141-4

Keywords

Navigation