Skip to main content
Log in

Carbon nanotubes exposure risk assessment: From toxicology to epidemiologic studies (Overview of the current problem)

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Nanoscale size and fiber like structure of carbon nanotubes (CNTs) may determine high reactivity and penetration, as well as the pathogenicity of asbestos and other mineral fibers. Despite many in vitro and in vivo studies, the absence of full-scale data on CNT effects on human health clearly point out the necessity for epidemiological studies. Currently, several projects are initiated worldwide on studying health risks associated with the inhalation of industrial CNTs, including NIOSH-promoted research (United States), the European CANTES study, and the Russian CNT-ERA project. Studies comprising several successive steps, such as CNT exposure assessment in occupational settings, toxicological evaluation, and epidemiological observations, are critical for determining material safety and use criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Commission Recommendation of 18 October 2011 on the definition of nanomaterial (Text with EEA relevance). http://eur-lex.europa.eu/LexUriServ/Lex-UriServ.do?uri=CELEX:32011H0696:EN:NOT (Assessed 19.11.14).

  2. GN (Hygienic Norms) no. 1.2.2633-10. Hygienic Norms for Priority Nanomaterials Content in the Environmental Objects (2010.05.25).

  3. A. A. Gusev, I. A. Polyakova, E. B. Gorsheneva, et al., “Gender difference of physiological effect of carbon nanostructured material which is a promising medicine carrier in laboratory mice experiment,” Nauch. Vedomosti Belgorod. Gos. Univ. Ser.: Estestv. Nauki, No. 13, 107–112 (2010).

    Google Scholar 

  4. Global Markets and Technologies for Carbon Nanotubes. http://www.bccresearch.com/report/carbon-nantubes-markets-technologies-nan024e.html (Assessed 19.11.14).

  5. Future Needs and Opportunities in Nanotechnology for Aerospace Applications—A NASA Perspective. http://inc10.org/talks/meador_slides.pdf (Assessed 19.11.14).

  6. MR (Methodological Recommendations) no. 1.2.0037-11: Check-up Procedure for Nanomaterials in the Air (17.10.2011).

  7. MR (Methodological Recommendations) no. 1.2.2639-10: The Way to Use Quantitative Methods for Determining Nanomaterials in Nanoindustry (24.05.2010).

  8. Maximal Permissible Concentrations (MPC) for Dangerous Matters in the Air of Working Zone: Hygienic Norms (Russian Register of Potentially Dangerous Chemical and Biological Substances, Moscow, 2003) [in Russian].

  9. Prediction of Russian Federation Scientific-Technical Development till 2030 (Approved by Russian Government, 3.01.2014) [in Russian].

  10. T. O. Khaliullin, E. R. Kisin, R. R. Zalyalov, et al., “Biological effects of multiwalled carbon nanotubes under in vivo pulmonary exposure,” Toksikol. Vestn., No. 4, 17–21 (2013).

    Google Scholar 

  11. T. O. Khaliullin, E. R. Kisin, R. E. Murray, et al., “Toxic effects of carbon nanotubes in macrophage and bronchial epithelium cell cultures,” Vestn. Tomsk. Gos. Univ. Biol., No. 1, 199–210 (2014).

    Google Scholar 

  12. T. O. Khaliullin, A. A. Shvedova, E. R. Kisin, et al., “Evaluation of fibrogenic potential of industrial multiwalled carbon nanotubes in acute aspiration experiment,” Bull. Exp. Biol. Med. 158(5), 684–687 (2015).

    Article  Google Scholar 

  13. K. Aschberger, H. Johnston, V. Stone, et al., “Review of carbon nanotubes toxicity and exposure—appraisal of human health risk assessment based on open literature,” Crit. Rev. Toxicol. 40(9), 759–790 (2010).

    Article  Google Scholar 

  14. P. A. Baron, A. D. Maynard, and M. Foley, “Evaluation of aerosol release during the handling of unrefined single walled carbon nanotubes material,” NIOSH Report No. NIOSH DART-02-191 (2002).

    Google Scholar 

  15. N. Behabtu, C. C. Young, D. E. Tsentalovich, et al., “Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity,” Science 339(6116), 182–186 (2013).

    Article  Google Scholar 

  16. S. Breitner, M. Stölzel, J. Cyrys, et al., “Short-term mortality rates during a decade of improved air quality in Erfurt, Germany,” Environ. Health Perspect. 117(3), 448–454 (2009).

    Article  Google Scholar 

  17. H. G. Chae, Y. H. Choi, M. L. Minus, et al., “Carbon nanotube reinforced small diameterpolyacrylonitrile based carbon fiber,” Compos. Sci. Technol. 69, 406 (2009).

    Article  Google Scholar 

  18. M. M. Dahm, D. E. Evans, M. K. Schubauer-Berigan, et al., “Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: mobile direct-reading sampling,” Ann. Occup. Hyg. 57(3), 328–344 (2013).

    Article  Google Scholar 

  19. L. Dai, D. W. Chang, J.-B. Baek, and W. Lu, “Carbon nanomaterials for advanced energy conversion and storage,” Small 8, 1130–1166 (2012).

    Article  Google Scholar 

  20. M. Davoren, E. Herzog, and A. Casey, “In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells,” Toxicol. in vitro, No. 21(3), 438–448 (2007).

    Google Scholar 

  21. R. de Winter-Sorkina and F. R. Cassee, “Multiple path particle dosimetry model (MPPD v1.0): a model for human and rat airway particle dosimetry,” National Institute for Public Health and the Environment (RIVM) Report (Bilthoven, 2002).

    Google Scholar 

  22. D. W. Dockery, C. A. Pope, X. Xu, et al., “An association between air pollution and mortality in six U.S. cities,” N. Engl. J. Med. 329(24), 1753–1759 (1993).

    Article  Google Scholar 

  23. K. Donaldson, R. Aitken, L. Tran, et al., “Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety,” Toxicol. Sci. 92(1), 5–22 (2006).

    Article  Google Scholar 

  24. K. Donaldson, V. Stone, A. Seaton, et al., “Re: induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube,” J. Toxicol. Sci. 33(3), 385 (2008).

    Article  Google Scholar 

  25. A. Erdely, T. Hulderman, R. Salmen, et al., “Crosstalk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers,” Nano Lett. 9(1), 36–43 (2009).

    Article  Google Scholar 

  26. A. Erdely, M. Dahm, B. T. Chen, et al., “Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology,” Part. Fibre Toxicol. 10, 53 (2013).

    Article  Google Scholar 

  27. Exposure Assessment and Epidemiological Study of U.S. Workers Exposed to Carbon Nanotubes and Carbon Nanofibers. http://www.gpo.gov/fdsys/pkg/FR-2012-09-20/pdf/2012-23194.pdf

  28. T. Fujitani, K. Ohyama, A. Hirose, et al., “Teratogenicity of Multi-Wall Carbon Nanotube (MWCNT) in ICR mice,” J. Toxicol. Sci. 37(1), 81–89 (2012).

    Article  Google Scholar 

  29. M. Ghosh, A. Chakraborty, M. Bandyopadhyay, and A. Mukherjee, “Multi-Walled Carbon Nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells,” J. Hazard. Mater. 197, 327–336 (2011).

    Article  Google Scholar 

  30. H. Greim, P. Borm, R. Schins, et al., “Toxicity of fibers and particles. Report of the Workshop held in Munich, Germany, 26–27 October 2000),” Inhal. Toxicol. 13(9), 737–754 (2001).

    Article  Google Scholar 

  31. Y. Grosse, D. Loomis, K. Z. Guyton, et al., “Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes,” Lancet Oncol. 15(13), 1427 (2014).

    Article  Google Scholar 

  32. H. Grubek-Jaworska, P. Nejman, K. Czuminska, et al., “Preliminary results on the pathogenic effects of intratracheal exposure to one-dimensional nanocarbons,” Carbon 44, 1057–1063 (2006).

    Article  Google Scholar 

  33. S. G. Han, Y. Kim, M. L. Kashon, et al., “Correlates of oxidative stress and free-radical activity in serum from asymptomatic shipyard welders,” Am. J. Respir. Crit. Care Med. 172, 1541–1548 (2005).

    Article  Google Scholar 

  34. X. He, S. H. Young, D. Schwegler-Berry, et al., “Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, Activating NF-êB signaling, and promoting fibroblastto-myofibroblast transformation,” Chem. Res. Toxicol. 24(12), 2237–2248 (2011).

    Article  Google Scholar 

  35. R. Herbert, J. Moline, G. Skloot, et al., “The world trade center disaster and the health of workers: five-year assessment of a unique medical screening program,” Environ. Health Perspect. 114(12), 1853–1858 (2006).

    Google Scholar 

  36. S. Hirano, Y. Fujitani, A. Furuyama, and S. Kanno, “Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells,” Toxicol. Appl. Pharmacol. 249(1), 8–15 (2010).

    Article  Google Scholar 

  37. S. Hirano, S. Kanno, and A. Furuyama, “Multi-walled carbon nanotubes injure the plasma membrane of macrophages,” Toxicol. Appl. Pharmacol. 232(2), 244–251 (2008).

    Article  Google Scholar 

  38. M. Ilves, E. Rydman, K. Savolainen, and H. Alenius, “Rigid rod-like carbon nanotubes induce signs of allergic asthma, in Proc. 2nd Int. School Conf. ANNT-2013, Ed. by A. Vedyagin (Listvyanka, Irkutsk Region, Aug. 15–19, 2013).

    Google Scholar 

  39. S. Ivani, I. Karimi, and S. R. Tabatabaei, “Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach,” Sci. Toxicol. 37(6), 1191–1205 (2012).

    Article  Google Scholar 

  40. G. Joseph, “Industrial hygiene air monitoring report,” DuPont Co. Internal Report (Oct. 2002).

    Google Scholar 

  41. T. Kato, Y. Totsuka, K. Ishino, et al., “Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems,” Nanotoxicology 7(4), 452–461 (2013).

    Article  Google Scholar 

  42. J. S. Kim, K. S. Song, J. K. Lee, et al., “Toxicogenomic comparison of Multi-Wall Carbon Nanotubes (MWCNTs) and asbestos,” Arch. Toxicol. 86, 553–562 (2012).

    Article  Google Scholar 

  43. T. Kondo, N. Hattori, N. Ishikawa, et al., “KL-6 concentration in pulmonary epithelial lining fluid is a useful prognostic indicator in patients with acute respiratory distress syndrome,” Respir. Res. 22, 12–32 (2011).

    Google Scholar 

  44. C. W. Lam, J. T. James, R. McCluskey, and R. L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation,” Toxicol. Sci. 77(1), 126–134 (2004).

    Article  Google Scholar 

  45. S. H. Liou, M. H. Lin, C. H. Hsu, et al., “Pilot study of health hazards among engineered nanoparticles manufacturing workers,” J. Occupat. Environ. Med. 60,Suppl. 1, Art. A100 (2010).

    Google Scholar 

  46. L. Ma-Hock, S. Treumann, V. Strauss, et al., “Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months,” Toxicol. Sci. 112(2), 468–481 (2009).

    Article  Google Scholar 

  47. J. B. Mangum, E. A. Turpin, A. Antao-Menezes, et al., “Single-Walled Carbon Nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF MRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ,” Part. Fibre Toxicol. 3, 15 (2006).

    Article  Google Scholar 

  48. A. D. Maynard, P. A. Baron, M. Foley, et al., “Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material,” J. Toxicol. Environ. Health A 67, 87–107 (2004).

    Article  Google Scholar 

  49. R. R. Mercer, A. F. Hubbs, J. F. Scabilloni, et al., “Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes,” Part. Fiber Toxicol. 8, 21 (2011).

    Article  Google Scholar 

  50. R. R. Mercer, J. Scabilloni, L. Wang, et al., “Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model,” Am. J. Physiol. Lung Cell Mol. Physiol. 294(1), 87–97 (2008).

    Article  Google Scholar 

  51. R. R. Mercer, J. F. Scabilloni, A. F. Hubbs, et al., “Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes,” Part Fibre Toxicol. 10, 33 (2013).

    Article  Google Scholar 

  52. M. Methner, L. Hodson, and C. Geraci, “Nanoparticle Emission Assessment Technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials. Part A,” J. Occup. Environ. Hyg. 7(3), 127–132 (2010).

    Article  Google Scholar 

  53. L. Migliore, D. Saracino, A. Bonelli, et al., “Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells,” Environ. Mol. Mutagen., No. 51(4), 294–303 (2010).

    Google Scholar 

  54. L. A. Mitchell, F. T. Lauer, S. W. Burchiel, and J. D. McDonald, “Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice,” Nat. Nanotechnol. 4(7), 451–456 (2009).

    Article  Google Scholar 

  55. N. A. Monteiro-Riviere, R. J. Nemanich, A. O. Inman, et al., “Multi-walled carbon nanotube interactions with human epidermal keratinocytes,” Toxicol. Lett. 155(3), 377–384 (2005).

    Article  Google Scholar 

  56. Y. Morimoto, M. Horie, N. Kobayashi, et al., “Inhalation toxicity assessment of carbon-based nanoparticles,” Acc. Chem. Res. 46(3), 770–781 (2013).

    Article  Google Scholar 

  57. J. Muller, F. Huaux, N. Moreau, et al., “Respiratory toxicity of multi-wall carbon nanotubes,” Toxicol. Appl. Pharmacol. 207(3), 221–231 (2005).

    Article  Google Scholar 

  58. J. Nakanishi, “Risk assessment of manufactured nanomaterials: Carbon Nanotubes (CNTs),” NEDO project (P06041) Research and Development of Nanoparticle Characterization Methods (2011).

    Google Scholar 

  59. J. Nakanishi, “Risk assessment of manufactured nanomaterials: “approaches”—overview of approaches and results,” NEDO project. (P06041) Research and Development of Nanoparticle Characterization Methods (2011).

    Google Scholar 

  60. F. Luizi, “Nanocyl. Responsible care and nanomaterials case study Nanocyl,” in Proc. European Responsible Care Conf. (Prague, Oct. 21–23, 2009). http://www.cefic.org/Documents/ResponsibleCare/04_Nanocyl.pdf

  61. A. Nel, T. Xia, L. Madler, and N. Li, “Toxic potential of materials at the nanolevel,” Science 311(5761), 622–627 (2006).

    Article  Google Scholar 

  62. NIOSH Current intelligence bulletin. Occupational Exposure to Carbon Nanotubes and Nanofibers. http://www.cdc.gov/niosh/docket/review/docket161a/pdfs/carbonNanotubeCIB_PublicReviewOfDraft.pdf

  63. NIOSH Current Intelligence Bulletin No. 65. Occupational Exposure to Carbon Nanotubes and Nanofibers. http://www.cdc.gov/niosh/docs/2013-145/pdfs/2013-145.pdf

  64. U. C. Nygaard, J. S. Hansen, M. Samuelsen, et al., “Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice,” Toxicol. Sci. 109(1), 113–123 (2009).

    Article  Google Scholar 

  65. B. Ouyang, C. S. Baxter, H. M. Lam, et al., “Hypomethylation of dual specificity phosphatase 22 promoter correlates with duration of service in firefighters and is inducible by low-dose benzo[a]pyrene,” J. Occup. Environ. Med. 54(7), 774–780 (2012).

    Article  Google Scholar 

  66. J. Palomäki, E. Välimäi, J. Sund, et al., “Long, Nneedle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism,” ACS Nano 5(9), 6861–6870 (2011).

    Article  Google Scholar 

  67. J. Pauluhn, “Multi-walled carbon nanotubes (baytubes): approach for derivation of occupational exposure limit,” Regul. Toxicol. Pharmacol. 57(1), 78–89 (2010).

    Article  Google Scholar 

  68. C. A. Poland, R. Duffin, and I. Kinloch, “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nat. Nanotechnol. 3(7), 423–428 (2008).

    Article  Google Scholar 

  69. C. A. Pope III, M. Ezzati, and D. W. Dockery, “Fineparticulate air pollution and life expectancy in the United States,” N. Engl. J. Med. 360(4), 376–386 (2009).

    Article  Google Scholar 

  70. D. W. Porter, A. F. Hubbs, R. R. Mercer, et al., “Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes,” Toxicology 269(2–3), 136–147 (2010).

    Article  Google Scholar 

  71. A. E. Porter, M. Gass, K. Muller, et al., “Direct imaging of single-walled carbon nanotubes in cells,” Nat. Nanotechnol. 2, 713–717 (2007).

    Article  Google Scholar 

  72. C. Powers, J. Gift, and G. Lehmann, “Sparking connections: toward better linkages between research and human health policy — an example with multiwalled carbon nanotubes,” Toxicol. Sci. 141(1), 6–17 (2014).

    Article  Google Scholar 

  73. Reference Methods for Measuring Airborne Man-Made Mineral Fibers (World Health Organization, Copenhagen, 1985).

  74. J. P. Ryman-Rasmussen, M. F. Cesta, A. R. Brody, et al., “Inhaled carbon nanotubes reach the subpleural tissue in mice,” Nat. Nanotechnol. 4(11), 747–751 (2009).

    Article  Google Scholar 

  75. N. Saito, H. Haniu, Yu. Usui, et al., “Safe clinical use of carbon nanotubes as innovative biomaterials,” Chem. Rev. 114(11), 6040–6079 (2014).

    Article  Google Scholar 

  76. L. M. Sargent, S. H. Reynolds, and V. Castranova, “Potential pulmonary effects of engineered carbon nanotubes: in vitro genotoxic effects,” Nanotoxicology, 396–408 (2010).

    Google Scholar 

  77. L. M. Sargent, D. W. Porter, L. M. Staska, et al., “Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotube,” Part. Fibre Toxicol. 11, 3 (2014).

    Article  Google Scholar 

  78. S. C. Sharma, S. Sarkar, A. Periyakaruppan, et al., “Single-walled carbon nanotube induces oxidative stress in rat lung epoithelial cells,” J. Nanosci. Nanotechnol. 7(7), 2466–2472 (2007).

    Article  Google Scholar 

  79. K. N. Shields, J. M. Cavallari, M. J. Hun, et al., “Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: a panel study,” Environ. Health 12, 7 (2013).

    Article  Google Scholar 

  80. K. Shimizu, A. Uchiyama, M. Yamashita, et al., “Biomembrane damage caused by exposure to multiwalled carbon nanotubes,” J. Toxicol. Sci. 38(1), 7–12 (2013).

    Article  Google Scholar 

  81. A. A. Shvedova, E. Kisin, A. R. Murray, et al., “Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis,” Am. J. Physiol. Lung Cell Mol. Physiol. 295(4), 552–565 (2008).

    Article  Google Scholar 

  82. A. A. Shvedova, A. V. Tkach, E. R. Kisin, et al., “Carbon nanotubes enhance metastatic growth of lung carcinoma via up-regulation of myeloid-derived suppressor cells,” Small, Nos. 9–10, 1691–1695 (2013).

    Article  Google Scholar 

  83. A. A. Shvedova, V. Castranova, E. R. Kisin, et al., “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells,” J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003).

    Article  Google Scholar 

  84. A. A. Shvedova, E. R. Kisin, R. Mercer, et al., “Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice,” Am. J. Physiol. Lung Cell. Mol. Physiol., No. 289, 698–708 (2005).

    Google Scholar 

  85. A. A. Shvedova, N. Yanamala, E. R. Kisin, et al., “Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons,” Am. J. Physiol. Lung Cell Mol. Physiol. 306(2), 170–182 (2014).

    Article  Google Scholar 

  86. R. K. Srivastava, A. B. Pant, M. P. Kashyap, et al., “Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549,” Nanotoxicology 5(2), 195–207 (2011).

    Article  Google Scholar 

  87. M. Stölzel, S. Breitner, J. Cyrys, et al., “Daily mortality and particulate matter in different size classes in Erfurt, Germany,” J. Expo Sci. Environ. Epidemiol. 17(5), 458–467 (2007).

    Article  Google Scholar 

  88. A. Takagi, A. Hirose, T. Nishimura, et al., “Induction of mesothelioma in P53+/- mouse by intraperitoneal application of multi-wall carbon nanotube,” J. Toxicol. Sci. 33(1), 105–116 (2008).

    Article  Google Scholar 

  89. T. Takahashi, M. Munakata, I. Suzuki, and Y. Kawakami, “Serum and bronchoalveolar fluid KL-6 levels in patients with pulmonary alveolar proteinosis,” Am. J. Respir. Crit. Care Med. 158(4), 1294–1298 (1998).

    Article  Google Scholar 

  90. D. Theegarten, S. Boukercha, S. Philippou, and O. Anhenn, “Submesothelial deposition of carbon nanoparticles after toner exposition: case report,” Diagn. Pathol. 5, 77 (2010).

    Article  Google Scholar 

  91. H. Tong, J. K. McGee, R. K. Saxena, et al., “Influence of acid functionalization on the cardiopulmonary toxicity of carbon nanotubes and carbon black particles in mice,” Toxicol. Appl. Pharmacol. 239(3), 224–232 (2009).

    Article  Google Scholar 

  92. R. Vermeulen, A. Pronk, J. Vlaanderen, et al., “0282 a cross-sectional study of markers of early immunological and cardiovascular health effects among a population exposed to carbon nanotubes: the CANTES study,” Occup. Environ. Med. 71, Suppl. A, A35 (2014).

    Article  Google Scholar 

  93. W. Wang, Y. Zhu, S. Liao, and J. Li, “Carbon nanotubes reinforced composites for biomedical applications,” BioMed Res. Int. 2014, 1–14 (2014).

    Google Scholar 

  94. D. B. Warheit, B. R. Laurence, K. L. Reed, et al., “Comparative pulmonary toxicity assessment of singlewall carbon nanotubes in rats,” Toxicol. Sci. 77, 117–125 (2004).

    Article  Google Scholar 

  95. H. E. Wichmann, C. Spix, T. Tuch, et al., “Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: role of particle number and particle mass,” Res. Rep. Health Eff. Inst. 98, 5–86 (2000).

    Google Scholar 

  96. M. Wu, R. E. Gordon, R. Herbert, et al., “Case report: lung disease in world trade center responders exposed to dust and smoke: carbon nanotubes found in the lungs of world trade center patients and dust samples,” Environ. Health Perspect. 118(4), 499–504 (2010).

    Article  Google Scholar 

  97. G. Yakovlev, G. Pervushin, I. Maeva, et al., “Modification of construction materials with multi-walled carbon nanotubes,” Proc. Eng. 57, 407–413 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Fatkhutdinova.

Additional information

Original Russian Text © L.M. Fatkhutdinova, T.O. Khaliullin, A.A. Shvedova, 2015, published in Rossiiskie Nanotekhnologii, 2015, Vol. 10, Nos. 5–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatkhutdinova, L.M., Khaliullin, T.O. & Shvedova, A.A. Carbon nanotubes exposure risk assessment: From toxicology to epidemiologic studies (Overview of the current problem). Nanotechnol Russia 10, 501–509 (2015). https://doi.org/10.1134/S1995078015030064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078015030064

Keywords

Navigation