Skip to main content
Log in

Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to separate mixtures of particles and live cells simultaneously. Two species of cells, including Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic field gradients, magnetic buoyancy forces exerted on particles and cells lead to size-dependent deflections from their laminar flow paths and result in spatial separation. We report the design, modeling, fabrication and characterization of the sorting device. This scheme is simple, low-cost and label-free compared to other existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams AA, Okagbare PI, Feng J, Hupert ML, Patterson D, Gottert J, McCarley RL, Nikitopoulos D, Murphy MC, Soper SA (2008) Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J Am Chem Soc 130(27):8633–8641. doi:10.1021/Ja8015022

    Article  Google Scholar 

  • Beyor N, Seo TS, Liu P, Mathies RA (2008) Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection. Biomed Microdevices 10(6):909–917. doi:10.1007/S10544-008-9206-3

    Article  Google Scholar 

  • Bonner WA, Sweet RG, Hulett HR, Herzenbe La (1972) Fluorescence activated cell sorting. Rev Sci Instrum 43(3):404–409

    Article  Google Scholar 

  • Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71(6):3430–3441

    Article  Google Scholar 

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784. doi:10.1073/Pnas.0605967103

    Article  Google Scholar 

  • Dharmasiri U, Witek MA, Adams AA, Osiri JK, Hupert ML, Bianchi TS, Roelke DL, Soper SA (2010) Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal Chem 82(7):2844–2849. doi:10.1021/Ac100323k

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046. doi:10.1039/B912547g

    Article  Google Scholar 

  • Frable WJ (2007) Error reduction and risk management in cytopathology. Semin Diagn Pathol 24(2):77–88

    Article  Google Scholar 

  • Furlani EP, Sahoo Y (2006) Analytical model for the magnetic field and force in a magnetophoretic microsystem. J Phys D Appl Phys 39(9):1724–1732. doi:10.1088/0022-3727/39/9/003

    Article  Google Scholar 

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110(3):1518–1563

    Article  Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    Article  Google Scholar 

  • Hafeli U, Schutt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carriers. Springer, New York

    Google Scholar 

  • Hatch A, Kamholz AE, Holman G, Yager P, Bohringer KF (2001) A ferrofluidic magnetic micropump. J Microelectromechanical Syst 10(2):215–221

    Article  Google Scholar 

  • Hoshino K, Huang YY, Lane N, Huebschman M, Uhr JW, Frenkel EP, Zhang XJ (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11(20):3449–3457. doi:10.1039/C1lc20270g

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990. doi:10.1126/science.1094567

    Article  Google Scholar 

  • Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M (2002) Systematic identification of pathways that couple cell growth and division in yeast. Science 297(5580):395–400. doi:10.1126/Science.1070850

    Article  Google Scholar 

  • Kaya T, Koser H (2009) Characterization of hydrodynamic surface Interactions of Escherichia coli cell bodies in shear flow. Phys Rev Lett 103(13):138103. doi:10.1103/Physrevlett.103.138103

    Article  Google Scholar 

  • Kose AR, Koser H (2012) Ferrofluid mediated nanocytometry. Lab Chip 12(1):190–196. doi:10.1039/C1lc20864k

    Article  Google Scholar 

  • Kose AR, Fischer B, Mao L, Koser H (2009) Label-free cellular manipulation and sorting via biocompatible ferrofluids. Proc Natl Acad Sci USA 106(51):21478–21483. doi:10.1073/Pnas.0912138106

    Article  Google Scholar 

  • Krebs Melissa D, Erb Randall M, Yellen Benjamin B, Samanta B, Bajaj A, Rotello Vincent M, Alsberg E (2009) Formation of ordered cellular structures in suspension via label-free negative magnetophoresis. Nano Lett 9(5):1812–1817

    Article  Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36(3):492–506. doi:10.1039/B601326k

    Article  Google Scholar 

  • Lee H, Purdon AM, Chu V, Westervelt RM (2004) Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4(5):995–998. doi:10.1021/Nl049562x

    Article  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39(3):1203–1217. doi:10.1039/B915999c

    Article  Google Scholar 

  • Liang LT, Zhu JJ, Xuan XC (2011) Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. Biomicrofluidics 5(3):034110. doi:0.1063/1.3618737

    Article  Google Scholar 

  • Liu RH, Yang JN, Lenigk R, Bonanno J, Grodzinski P (2004) Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem 76(7):1824–1831. doi:10.1021/Ac0353029

    Article  Google Scholar 

  • Liu CX, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014. doi:10.1063/1.3116091

    Article  Google Scholar 

  • Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ (2004) A magnetocaloric pump for microfluidic applications. IEEE T Nanobiosci 3(2):101–110. doi:10.1109/Tnb.2004.828265

    Article  Google Scholar 

  • Mao LD, Koser H (2006) Towards ferrofluidics for mu-TAS and lab on-a-chip applications. Nanotechnology 17(4):S34–S47. doi:10.1088/0957-4484/17/4/007

    Article  Google Scholar 

  • Mao L, Koser H (2007) Overcoming the diffusion barrier: ultra-fast micro-scale mixing via ferrofluids. In: 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, pp 1829–1832

  • Mao LD, Elborai S, He XW, Zahn M, Koser H (2011) Direct observation of closed-loop ferrohydrodynamic pumping under traveling magnetic fields. Phys Rev B 84(10):104431. doi:10.1103/Physrevb.84.104431

    Article  Google Scholar 

  • Mihajlovic G, Aledealat K, Xiong P, Von Molnar S, Field M, Sullivan GJ (2007) Magnetic characterization of a single superparamagnetic bead by phase-sensitive micro-Hall magnetometry. Appl Phys Lett 91(17):172518. doi:10.1063/1.2802732

    Article  Google Scholar 

  • Miller MM, Sheehan PE, Edelstein RL, Tamanaha CR, Zhong L, Bounnak S, Whitman LJ, Colton RJ (2001) A DNA array sensor utilizing magnetic microbeads and magnetoelectronic detection. J Magn Magn Mater 225(1–2):138–144

    Article  Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High-gradient magnetic cell-separation with MACS. Cytometry 11(2):231–238

    Article  Google Scholar 

  • Mirica KA, Shevkoplyas SS, Phillips ST, Gupta M, Whitesides GM (2009) Measuring densities of solids and liquids using magnetic levitation: fundamentals. J Am Chem Soc 131(29):10049–10058. doi:10.1021/Ja900920s

    Article  Google Scholar 

  • Moriarty AT, Clayton AC, Zaleski S, Henry MR, Schwartz MR, Eversole GM, Tench WD, Fatheree LA, Souers RJ, Wilbur DC (2009) Unsatisfactory reporting rates: 2006 practices of participants in the college of American pathologists interlaboratory comparison program in gynecologic cytology. Arch Pathol Lab Med 133(12):1912–1916. doi:10.1043/1543-2165-133.12.1912

    Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi:10.1038/nature06385

    Article  Google Scholar 

  • Nguyen NT (2012) Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid Nanofluid 12(1–4):1–16. doi:10.1007/S10404-011-0903-5

    Article  Google Scholar 

  • Nguyen NT, Ng KM, Huang XY (2006) Manipulation of ferrofluid droplets using planar coils. Appl Phys Lett 89(5):052509. doi:10.1063/1.2335403

    Article  Google Scholar 

  • Odenbach S (ed) (2002) Ferrofluids: magnetically controllable fluids and their applications. Springer, London

    Google Scholar 

  • Pamme N (2006) Magnetism and microfluidics. Lab Chip 6(1):24–38. doi:10.1039/B513005k

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659. doi:10.1039/B712784g

    Article  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 13:R167–R181

    Article  Google Scholar 

  • Peyman SA, Iwan EY, Margarson O, Iles A, Pamme N (2009) Diamagnetic repulsion—a versatile tool for label-free particle handling in microfluidic devices. J Chromatogr A 1216(52):9055–9062. doi:10.1016/J.Chroma.2009.06.039

    Article  Google Scholar 

  • Rife JC, Miller MM, Sheehan PE, Tamanaha CR, Tondra M, Whitman LJ (2003) Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sens Actuators A Phys 107(3):209–218. doi:10.1016/S0924-4247(03)00380-7

    Article  Google Scholar 

  • Rodriguez-Villarreal AI, Tarn MD, Madden LA, Lutz JB, Greenman J, Samitier J, Pamme N (2011) Flow focussing of particles and cells based on their intrinsic properties using a simple diamagnetic repulsion setup. Lab Chip 11(7):1240–1248. doi:10.1039/C0lc00464b

    Article  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Shen F, Hwang H, Hahn YK, Park J-K (2012) Label-free cell separation using a tunable magnetophoretic repulsion force. Anal Chem. doi:10.1021/ac201505j

    Google Scholar 

  • Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302. doi:10.1039/B705045c

    Article  Google Scholar 

  • Shi JJ, Huang H, Stratton Z, Huang YP, Huang TJ (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359. doi:10.1039/B915113c

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen NT (2007) A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab Chip 7(8):1012–1017. doi:10.1039/B700575j

    Article  Google Scholar 

  • Sun Y, Nguyen NT, Kwok YC (2008) High-throughput polymerase chain reaction in parallel circular loops using magnetic actuation. Anal Chem 80(15):6127–6130. doi:10.1021/Ac800787g

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103. doi:10.1146/Annurev.Bioeng.7.011205.135108

    Article  Google Scholar 

  • Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36(1):92–103. doi:10.1016/J.Mechrescom.2008.08.006

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454. doi:10.1146/Annurev.Bioeng.8.061505.095739

    Article  Google Scholar 

  • Wang ZC, Zhe JA (2011) Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves. Lab Chip 11(7):1280–1285. doi:10.1039/C0lc00527d

    Article  Google Scholar 

  • Winkleman A, Perez-Castillejos R, Gudiksen KL, Phillips ST, Prentiss M, Whitesides GM (2007) Density-based diamagnetic separation: devices for detecting binding events and for collecting unlabeled diamagnetic particles in paramagnetic solutions. Anal Chem 79(17):6542–6550. doi:10.1021/Ac070500b

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471. doi:10.1021/Ac049863r

    Article  Google Scholar 

  • Yellen BB, Hovorka O, Friedman G (2005) Arranging matter by magnetic nanoparticle assemblers. Proc Natl Acad Sci USA 102(25):8860–8864. doi:10.1073/Pnas.0500409102

    Article  Google Scholar 

  • Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192(3):373–382. doi:10.1083/jcb.201010021

    Article  Google Scholar 

  • Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic–microfluidic blood cleansing device. Lab Chip 9(9):1171–1177. doi:10.1039/B816986a

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645

    Article  Google Scholar 

  • Zhang K, Liang QL, Ai XN, Hu P, Wang YM, Luo GA (2011a) Comprehensive two-dimensional manipulations of picoliter microfluidic droplets sampled from nanoliter samples. Anal Chem 83(20):8029–8034. doi:10.1021/Ac2017458

    Article  Google Scholar 

  • Zhang K, Liang QL, Ai XN, Hu P, Wang YM, Luo GA (2011b) On-demand microfluidic droplet manipulation using hydrophobic ferrofluid as a continuous-phase. Lab Chip 11(7):1271–1275. doi:10.1039/C0lc00484g

    Article  Google Scholar 

  • Zhu TT, Marrero F, Mao LD (2010) Continuous separation of non-magnetic particles inside ferrofluids. Microfluid Nanofluid 9(4–5):1003–1009

    Article  Google Scholar 

  • Zhu TT, Cheng R, Mao LD (2011a) Focusing microparticles in a microfluidic channel with ferrofluids. Microfluid Nanofluid 11(6):695–701. doi:10.1007/S10404-011-0835-0

    Article  Google Scholar 

  • Zhu TT, Lichlyter DJ, Haidekker MA, Mao LD (2011b) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10(6):1233–1245. doi:10.1007/S10404-010-0754-5

    Article  Google Scholar 

  • Zhu JJ, Liang LT, Xuan XC (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluid 12(1–4):65–73. doi:10.1007/S10404-011-0849-7

    Article  Google Scholar 

Download references

Acknowledgments

This work is in part supported by the National Science Foundation, American Society for Microbiology/Centers for Disease Control and Prevention Postdoctoral Research Fellowship, Centers for Disease Control and Prevention and University of Georgia Seed Award Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leidong Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, T., Cheng, R., Lee, S.A. et al. Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid Nanofluid 13, 645–654 (2012). https://doi.org/10.1007/s10404-012-1004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1004-9

Keywords

Navigation