Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Natural killer cell memory

Abstract

Natural killer (NK) cells are bone marrow–derived granular lymphocytes that have a key role in immune defense against viral and bacterial infections and malignancies. NK cells are traditionally defined as cells of the innate immune response because they lack RAG recombinase–dependent clonal antigen receptors. However, evidence suggests that specific subsets of mouse NK cells can nevertheless develop long-lived and highly specific memory to a variety of antigens. Here we review published evidence of NK cell–mediated, RAG-independent adaptive immunity. We also compare and contrast candidate mechanisms for mammalian NK cell memory and antigen recognition with other examples of RAG-independent pathways that generate antigen receptor diversity in non-mammalian species and discuss NK cell memory in the context of lymphocyte evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed model for the generation, maintenance and reactivation of NK cell memory.
Figure 2: Key cellular migration events during hapten-induced NK cell–mediated contact hypersensitivity.
Figure 3: Overview of innate and adaptive immunity and cytotoxic leukocytes in deuterostomes.

Similar content being viewed by others

References

  1. Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109, S45–S55 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. II. Specific in vitro stimulation with a hapten, 2,4-dinitrobenzene sulfonic acid (DNB-SO3Na). J. Immunol. 112, 849–851 (1974).

    CAS  PubMed  Google Scholar 

  3. Phanuphak, P., Moorhead, J.W. & Claman, H.N. Tolerance and contact sensitivity to DNFB in mice. I. In vivo detection by ear swelling and correlation with in vitro cell stimulation. J. Immunol. 112, 115–123 (1974).

    CAS  PubMed  Google Scholar 

  4. Crowle, A.J. Delayed hypersensitivity in mice; its detection by skin tests and its passive transfer. Science 130, 159–160 (1959).

    CAS  PubMed  Google Scholar 

  5. Quan, F.S., Huang, C., Compans, R.W. & Kang, S.M. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J. Virol. 81, 3514–3524 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Herberman, R.B., Nunn, M.E. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity. Int. J. Cancer 16, 216–229 (1975).

    CAS  PubMed  Google Scholar 

  7. Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    CAS  PubMed  Google Scholar 

  8. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    CAS  PubMed  Google Scholar 

  9. Walzer, T., Dalod, M., Robbins, S.H., Zitvogel, L. & Vivier, E. Natural-killer cells and dendritic cells: “l'union fait la force”. Blood 106, 2252–2258 (2005).

    CAS  PubMed  Google Scholar 

  10. Orange, J.S. Human natural killer cell deficiencies. Curr. Opin. Allergy Clin. Immunol. 6, 399–409 (2006).

    PubMed  Google Scholar 

  11. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    CAS  PubMed  Google Scholar 

  12. Paust, S., Senman, B. & von Andrian, U.H. Adaptive immune responses mediated by natural killer cells. Immunol. Rev. 235, 286–296 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Askenase, P.W. Yes T cells, but three different T cells (αβ, γδ and NK T cells), and also B-1 cells mediate contact sensitivity. Clin. Exp. Immunol. 125, 345–350 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gorbachev, A.V. & Fairchild, R.L. Induction and regulation of T-cell priming for contact hypersensitivity. Crit. Rev. Immunol. 21, 451–472 (2001).

    CAS  PubMed  Google Scholar 

  17. Boehncke, W.H. et al. Leukocyte extravasation as a target for anti-inflammatory therapy—which molecule to choose? Exp. Dermatol. 14, 70–80 (2005).

    CAS  PubMed  Google Scholar 

  18. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2, 223–238 (1995).

    CAS  PubMed  Google Scholar 

  19. DiSanto, J.P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. USA 92, 377–381 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. MacDougall, J.R., Croy, B.A., Chapeau, C. & Clark, D.A. Demonstration of a splenic cytotoxic effector cell in mice of genotype SCID/SCID.BG/BG. Cell. Immunol. 130, 106–117 (1990).

    CAS  PubMed  Google Scholar 

  21. Vermijlen, D. et al. High-density oligonucleotide array analysis reveals extensive differences between freshly isolated blood and hepatic natural killer cells. Eur. J. Immunol. 34, 2529–2540 (2004).

    CAS  PubMed  Google Scholar 

  22. Ochi, M. et al. Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39, 1321–1331 (2004).

    CAS  PubMed  Google Scholar 

  23. Ishiyama, K. et al. Difference in cytotoxicity against hepatocellular carcinoma between liver and periphery natural killer cells in humans. Hepatology 43, 362–372 (2006).

    CAS  PubMed  Google Scholar 

  24. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    CAS  PubMed  Google Scholar 

  25. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    CAS  PubMed  Google Scholar 

  27. Cooper, M.A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 106, 1915–1919 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  PubMed  Google Scholar 

  29. Sallusto, F. & Lanzavecchia, A. Heterogeneity of CD4+ memory T cells: Functional modules for tailored immunity. Eur. J. Immunol. 39, 2076–2082 (2009).

    CAS  PubMed  Google Scholar 

  30. Alvarez, D., Vollmann, E.H. & von Andrian, U.H. Mechanisms and consequences of dendritic cell migration. Immunity 29, 325–342 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Catalina, M.D. et al. The route of antigen entry determines the requirement for L-selectin during immune responses. J. Exp. Med. 184, 2341–2351 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jenne, C.N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morris, M.A. & Ley, K. Trafficking of natural killer cells. Curr. Mol. Med. 4, 431–438 (2004).

    CAS  PubMed  Google Scholar 

  35. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  36. Hunger, R.E., Yawalkar, N., Braathen, L.R. & Brand, C.U. The HECA-452 epitope is highly expressed on lymph cells derived from human skin. Br. J. Dermatol. 141, 565–569 (1999).

    CAS  PubMed  Google Scholar 

  37. Carbone, T. et al. CD56highCD16CD62L NK cells accumulate in allergic contact dermatitis and contribute to the expression of allergic responses. J. Immunol. 184, 1102–1110 (2010).

    CAS  PubMed  Google Scholar 

  38. Weninger, W. et al. Specialized contributions by α(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. Immunity 12, 665–676 (2000).

    CAS  PubMed  Google Scholar 

  39. Buentke, E. et al. Natural killer and dendritic cell contact in lesional atopic dermatitis skin—Malassezia-influenced cell interaction. J. Invest. Dermatol. 119, 850–857 (2002).

    CAS  PubMed  Google Scholar 

  40. van der Voort, R. et al. An alternatively spliced CXCL16 isoform expressed by dendritic cells is a secreted chemoattractant for CXCR6+ cells. J. Leukoc. Biol. 87, 1029–1039 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Calabresi, P.A., Yun, S.H., Allie, R. & Whartenby, K.A. Chemokine receptor expression on MBP-reactive T cells: CXCR6 is a marker of IFNγ-producing effector cells. J. Neuroimmunol. 127, 96–105 (2002).

    CAS  PubMed  Google Scholar 

  42. Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    CAS  PubMed  Google Scholar 

  43. Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33, 306–313 (2003).

    CAS  PubMed  Google Scholar 

  44. Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology 120, 73–82 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nocentini, G., Ronchetti, S., Cuzzocrea, S. & Riccardi, C. GITR/GITRL: more than an effector T cell co-stimulatory system. Eur. J. Immunol. 37, 1165–1169 (2007).

    CAS  PubMed  Google Scholar 

  46. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    CAS  PubMed  Google Scholar 

  47. Gao, N., Dang, T. & Yuan, D. IFN-gamma-dependent and -independent initiation of switch recombination by NK cells. J. Immunol. 167, 2011–2018 (2001).

    CAS  PubMed  Google Scholar 

  48. Lunemann, A., Lunemann, J.D. & Munz, C. Regulatory NK-cell functions in inflammation and autoimmunity. Mol. Med. 15, 352–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Namekawa, T. et al. Killer cell activating receptors function as costimulatory molecules on CD4+CD28null T cells clonally expanded in rheumatoid arthritis. J. Immunol. 165, 1138–1145 (2000).

    CAS  PubMed  Google Scholar 

  50. Martin, M.P. et al. Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J. Immunol. 169, 2818–2822 (2002).

    CAS  PubMed  Google Scholar 

  51. Momot, T. et al. Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum. 50, 1561–1565 (2004).

    CAS  PubMed  Google Scholar 

  52. Suzuki, Y. et al. Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J. Invest. Dermatol. 122, 1133–1136 (2004).

    CAS  PubMed  Google Scholar 

  53. Hedman, M., Faresjo, M., Axelsson, S., Ludvigsson, J. & Casas, R. Impaired CD4 and CD8 T cell phenotype and reduced chemokine secretion in recent-onset type 1 diabetic children. Clin. Exp. Immunol. 153, 360–368 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, J.V. et al. Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. J. Immunol. Methods 352, 89–100 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Ivakine, E.A. et al. Molecular genetic analysis of the Idd4 locus implicates the IFN response in type 1 diabetes susceptibility in nonobese diabetic mice. J. Immunol. 176, 2976–2990 (2006).

    CAS  PubMed  Google Scholar 

  56. Garcia, G.E. et al. Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis. Am. J. Pathol. 170, 1485–1496 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sordi, V. et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106, 419–427 (2005).

    CAS  PubMed  Google Scholar 

  58. Teramoto, K. et al. Microarray analysis of glomerular gene expression in murine lupus nephritis. J. Pharmacol. Sci. 106, 56–67 (2008).

    CAS  PubMed  Google Scholar 

  59. Ruth, J.H. et al. CXCL16-mediated cell recruitment to rheumatoid arthritis synovial tissue and murine lymph nodes is dependent upon the MAPK pathway. Arthritis Rheum. 54, 765–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aslanian, A.M. & Charo, I.F. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114, 583–590 (2006).

    CAS  PubMed  Google Scholar 

  61. Galkina, E. & Ley, K. Leukocyte influx in atherosclerosis. Curr. Drug Targets 8, 1239–1248 (2007).

    CAS  PubMed  Google Scholar 

  62. Wuttge, D.M. et al. CXCL16/SR-PSOX is an interferon-γ-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 24, 750–755 (2004).

    CAS  PubMed  Google Scholar 

  63. Jiang, X. et al. Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J. Immunol. 175, 2051–2055 (2005).

    CAS  PubMed  Google Scholar 

  64. Bouazzaoui, A. et al. Chemokine and chemokine receptor expression analysis in target organs of acute graft-versus-host disease. Genes Immun. 10, 687–701 (2009).

    CAS  PubMed  Google Scholar 

  65. Matsumura, K. et al. Radioimmunoscintigraphy of pancreatic cancer in tumor-bearing athymic nude mice using 99mtechnetium-labeled anti-KL-6/MUC1 antibody. Radiat. Med. 26, 133–139 (2008).

    CAS  PubMed  Google Scholar 

  66. Seidl, H. et al. Profiles of chemokine receptors in melanocytic lesions: de novo expression of CXCR6 in melanoma. Hum. Pathol. 38, 768–780 (2007).

    CAS  PubMed  Google Scholar 

  67. Gutwein, P. et al. Tumoural CXCL16 expression is a novel prognostic marker of longer survival times in renal cell cancer patients. Eur. J. Cancer 45, 478–489 (2009).

    CAS  PubMed  Google Scholar 

  68. Wang, J., Lu, Y., Koch, A.E., Zhang, J. & Taichman, R.S. CXCR6 induces prostate cancer progression by the AKT/mammalian target of rapamycin signaling pathway. Cancer Res. 68, 10367–10376 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Meijer, J. et al. The chemokine receptor CXCR6 and its ligand CXCL16 are expressed in carcinomas and inhibit proliferation. Cancer Res. 68, 4701–4708 (2008).

    CAS  PubMed  Google Scholar 

  70. Liao, F. et al. STRL33, A novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Limou, S. et al. Multiple-cohort genetic association study reveals CXCR6 as a new chemokine receptor involved in long-term nonprogression to AIDS. J. Infect. Dis. 202, 908–915 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Blaak, H. et al. CCR5, GPR15, and CXCR6 are major coreceptors of human immunodeficiency virus type 2 variants isolated from individuals with and without plasma viremia. J. Virol. 79, 1686–1700 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Duggal, P. et al. Genetic influence of CXCR6 chemokine receptor alleles on PCP-mediated AIDS progression among African Americans. Genes Immun. 4, 245–250 (2003).

    CAS  PubMed  Google Scholar 

  74. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lanier, L.L. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8, 259–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Scalzo, A.A., Manzur, M., Forbes, C.A., Brown, M.G. & Shellam, G.R. NK gene complex haplotype variability and host resistance alleles to murine cytomegalovirus in wild mouse populations. Immunol. Cell Biol. 83, 144–149 (2005).

    CAS  PubMed  Google Scholar 

  77. Gazit, R. et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat. Immunol. 7, 517–523 (2006).

    CAS  PubMed  Google Scholar 

  78. Mandelboim, O. et al. Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–1060 (2001).

    CAS  PubMed  Google Scholar 

  79. Yokoyama, W.M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143–154 (2006).

    CAS  PubMed  Google Scholar 

  80. Bjorkstrom, N.K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med 208, 13–21 (2011).

    PubMed  PubMed Central  Google Scholar 

  81. Martin, M.P. et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434 (2002).

    CAS  PubMed  Google Scholar 

  82. Khakoo, S.I. et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305, 872–874 (2004).

    CAS  PubMed  Google Scholar 

  83. Reeves, R.K. et al. CD16- natural killer cells: enrichment in mucosal and secondary lymphoid tissues and altered function during chronic SIV infection. Blood 115, 4439–4446 (2011).

    Google Scholar 

  84. Berahovich, R.D., Lai, N.L., Wei, Z., Lanier, L.L. & Schall, T.J. Evidence for NK cell subsets based on chemokine receptor expression. J. Immunol. 177, 7833–7840 (2006).

    CAS  PubMed  Google Scholar 

  85. Cooper, M.D. & Alder, M.N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    CAS  PubMed  Google Scholar 

  86. Vosshenrich, C.A. et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat. Immunol. 7, 1217–1224 (2006).

    CAS  PubMed  Google Scholar 

  87. Fernandez-Busquets, X. & Burger, M.M. The main protein of the aggregation factor responsible for species-specific cell adhesion in the marine sponge Microciona prolifera is highly polymorphic. J. Biol. Chem. 272, 27839–27847 (1997).

    CAS  PubMed  Google Scholar 

  88. Nicotra, M.L. et al. A hypervariable invertebrate allodeterminant. Curr. Biol. 19, 583–589 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Joly, E. Various hypotheses on MHC evolution suggested by the concerted evolution of CD94L and MHC class Ia molecules. Biol. Direct 1, 3 (2006).

    PubMed  PubMed Central  Google Scholar 

  90. Zucchetti, I. et al. ciCD94–1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation 76, 267–282 (2008).

    CAS  PubMed  Google Scholar 

  91. Flajnik, M.F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet 11, 47–59 (2010).

    CAS  PubMed  Google Scholar 

  92. Guo, P. et al. Dual nature of the adaptive immune system in lampreys. Nature 459, 796–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Uinuk-Ool, T.S. et al. Phylogeny of antigen-processing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scand. J. Immunol. 58, 436–448 (2003).

    CAS  PubMed  Google Scholar 

  94. Uinuk-ool, T.S. et al. Identification and characterization of a TAP-family gene in the lamprey. Immunogenetics 55, 38–48 (2003).

    CAS  PubMed  Google Scholar 

  95. Tsutsui, S., Nakamura, O. & Watanabe, T. Lamprey (Lethenteron japonicum) IL-17 upregulated by LPS-stimulation in the skin cells. Immunogenetics 59, 873–882 (2007).

    CAS  PubMed  Google Scholar 

  96. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    CAS  PubMed  Google Scholar 

  97. Galkina, E. et al. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-γ production, and macrophage accumulation in the aortic wall. Circulation 116, 1801–1811 (2007).

    CAS  PubMed  Google Scholar 

  98. Latta, M., Mohan, K. & Issekutz, T.B. CXCR6 is expressed on T cells in both T helper type 1 (Th1) inflammation and allergen-induced Th2 lung inflammation but is only a weak mediator of chemotaxis. Immunology 121, 555–564 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Diegelmann, J. et al. Expression and regulation of the chemokine CXCL16 in Crohn's disease and models of intestinal inflammation. Inflamm. Bowel Dis. 16, 1871–1881 (2010).

    PubMed  Google Scholar 

  100. Matsumura, S. et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 181, 3099–3107 (2008).

    CAS  PubMed  Google Scholar 

  101. Liao, F. et al. STRL33, a novel chemokine receptor-like protein, functions as a fusion cofactor for both macrophage-tropic and T cell line-tropic HIV-1. J. Exp. Med. 185, 2015–2023 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Heydtmann, M. et al. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J. Immunol. 174, 1055–1062 (2005).

    CAS  PubMed  Google Scholar 

  103. Sato, T. et al. Role for CXCR6 in recruitment of activated CD8+ lymphocytes to inflamed liver. J. Immunol. 174, 277–283 (2005).

    CAS  PubMed  Google Scholar 

  104. Oh, S.T., Schramme, A., Tilgen, W., Gutwein, P. & Reichrath, J. Overexpression of CXCL16 in lesional psoriatic skin. Dermatoendocrinol. 1, 114–118 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Martini, G. et al. CXCR6-CXCL16 interaction in the pathogenesis of Juvenile Idiopathic Arthritis. Clin. Immunol. 129, 268–276 (2008).

    CAS  PubMed  Google Scholar 

  106. van der Voort, R. et al. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum. 52, 1381–1391 (2005).

    CAS  PubMed  Google Scholar 

  107. Nanki, T. et al. Pathogenic role of the CXCL16-CXCR6 pathway in rheumatoid arthritis. Arthritis Rheum. 52, 3004–3014 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Cancer Research Institute (S.P.), the Ragon Institute of MGH, MIT and Harvard (S.P. and U.H.v.A.) and the US National Institutes of Health (AI069259, AI072252 and AI1078897 to U.H.v.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H von Andrian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paust, S., von Andrian, U. Natural killer cell memory. Nat Immunol 12, 500–508 (2011). https://doi.org/10.1038/ni.2032

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2032

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing