Skip to main content
Log in

Optofluidic waveguides: I. Concepts and implementations

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal G (2006) Nonlinear fiber optics, 4th edn. Academic, London

    Google Scholar 

  • Almeida VR, Xu Q, Barrios CA, Lipson M (2004) Guiding and confining light in void nanostructures. Opt Lett 29:1209–1211

    Article  Google Scholar 

  • Archambault JL, Black RJ, Lacroix S, Bures J (1993) Loss calculations for antiresonant waveguides. J Lightwave Technol 11:416–423

    Article  Google Scholar 

  • Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  Google Scholar 

  • Balslev S, Kristensen A (2005) Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt Exp 13:344–351

    Article  Google Scholar 

  • Bernini R, Campopiano S, Zeni L, Sarro PM (2004) ARROW optical waveguides based sensors. Sens Actuators B100:143–146

    Google Scholar 

  • Bernini R, DeNuccio E, Minardo A, Zeni L, Sarro PM (2007) Integrated silicon optical sensors based on hollow core waveguide. Proc SPIE 6477:647714

    Article  Google Scholar 

  • Campopiano S, Bernini R, Zeni L, Sarro PM (2004) Microfluidic sensor based on integrated optical hollow waveguides. Opt Lett 29:1894–1896

    Article  Google Scholar 

  • Coldren LA, Corzine SW (1995) Diode lasers and photonic integrated circuits. Wiley, London

    Google Scholar 

  • Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393

    Article  Google Scholar 

  • Cregan RF, Mangan BJ, Knight JC, Birks TA, Russell PSJ, Roberts PJ, Allan DC (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539

    Article  Google Scholar 

  • Datta A, Eom I, Dhar A, Kuban P, Manor R, Ahmad I, Gangopadhyay S, Dallas T, Holtz M, Temkin H, Dasgupta P (2003) Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon. IEEE Sens J 3:788–795

    Article  Google Scholar 

  • Delonge T, Fouckhardt H (1995) Integrated optical detection cell based on Bragg reflecting waveguides. J Chromat A 716:135–139

    Article  Google Scholar 

  • Domachuk P, Nguyen HC, Eggleton BJ, Straub M, Gu M (2004) Microfluidic tunable photonic band-gap device. Appl Phys Lett 84:1838–1840

    Article  Google Scholar 

  • Duguay MA, Kokubun Y, Koch T, Pfeiffer L (1986) Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures. Appl Phys Lett 49:13–15

    Article  Google Scholar 

  • Ehlert A, Buettgenbach S (1999) Automatic sensor system for groundwater monitoring network. Proc SPIE 3857:61–69

    Article  Google Scholar 

  • Erickson D, Rockwood T, Emery T, Scherer A, Psaltis D (2006) Nanofluidic tuning of photonic crystal circuits. Opt Lett 31:59–61

    Article  Google Scholar 

  • Fink Y, Ripin DJ, Fan S, Chen C, Joannopoulos JD, Thomas EL (1999) Guiding optical light in air using an all-dielectric structure. J Lightwave Technol 17:2039–2041

    Article  Google Scholar 

  • Hakanson U, Measor P, Yin D, Lunt E, Hawkins AR, Sandoghdar V, Schmidt H (2007) Tailoring the transmission of liquid-core waveguides for wavelength filtering on a chip. Proc SPIE 6477:647715

    Article  Google Scholar 

  • Heng X, Erickson D, Baugh LR, Yaqoob Z, Sternberg PW, Psaltis D, Yang C (2006) Optofluidic microscopy: a method for implementing high resolution optical microscope on a chip. Lab Chip 6:1274–1276

    Article  Google Scholar 

  • Horvath R, Lindvold LR, Larsen NB (2002) Reverse-symmetry waveguides: theory and fabrication. Appl Phys B 74:383–393

    Article  Google Scholar 

  • Joannopoulos JD, Meade RD, Winn JN (1995) Photonic crystals: molding the flow of light. Princeton University Press, New Jersey

    MATH  Google Scholar 

  • Koo JS, Williams RB, Gawith CBE, Watts SP, Emmerson GD, Albanis V, Smith PGR, Grossel MC (2003) UV written waveguide devices using crosslinkable PMMA-based copolymers. Electron Lett 39:394–395

    Article  Google Scholar 

  • Kurdi BN, Hall DG (1988) Optical waveguides in oxygen-implaneted buried-oxide SOI structures. Opt Lett 13:175–177

    Google Scholar 

  • Levene MJ, Korlach J, Turner SW, Fouquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  Google Scholar 

  • Loncar M, Nedeljkovic D, Doll T, Vuckovic J, Scherer A, Pearsall TP (2000) Waveguiding in planar photonic crystals. Appl Phys Lett 77:1937–1939

    Article  Google Scholar 

  • Mach P, Dolinski M, Baldwin KW, Rogers JA, Kerbage C, Windeler RS, Eggleton BJ (2002) Tunable microfluidic optical fiber. Appl Phys Lett 80:4294–4296

    Article  Google Scholar 

  • Mandal S, Erickson D (2007) Optofluidic transport in liquid core waveguiding structures. Appl Phys Lett 90:184103

    Article  Google Scholar 

  • Marcatili EAJ (1969) Dielectric rectangular waveguide and directional coupler for integrated optics. Bell Syst Technol J 48:2071–2102

    Google Scholar 

  • Mawst LJ, Botez D, Zmudzinski C, Tu C (1992) Design optimization of ARROW-type diode lasers. IEEE Phot Technol Lett 4:1204–1206

    Article  Google Scholar 

  • McNab S, Moll N, Vlasov Y (2003) Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt Exp 11:2927–2939

    Article  Google Scholar 

  • Measor P, Lunt EJ, Seballos L, Yin D, Zhang JZ, Hawkins AR, Schmidt H (2007) On-chip surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides. Appl Phys Lett 90:211107

    Article  Google Scholar 

  • Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Inst 74:3597

    Article  Google Scholar 

  • Monat C, Domachuk P, Eggleton BJ (2007) Integrated optofluidics: a new river of light. Nat Photonics 1:106–114

    Article  Google Scholar 

  • Ng JMK, Gitlin I, Stroock AD, Whitesides GM (2002) Components for integrated PDMS microfluidic systems. Electrophoresis 23:3461–3473

    Article  Google Scholar 

  • Okamoto K (2005) Fundamentals of optical waveguides, 2nd edn. Academic, London

    Google Scholar 

  • Patterson SG, Petrich SG, Ram RJ, Kolodiejski (1999) Continuous-wave room temperature operation of bipolar cascade laser. Electron Lett 35:397–397

  • Psaltis D, Quake SR, Yang C (2006) Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442:381–386

    Article  Google Scholar 

  • Rigler R, Elson ES (2001) Fluorescence correlation spectroscopy, 1st edn. Springer, Heidelberg

    Google Scholar 

  • Rindorf L, Jensen JB, Dufva M, Pedersen LH, Høiby PE, Bang O (2006) Photonic crystal fiber long-period gratings for biochemical sensing. Opt Exp 14:8224–8231

    Article  Google Scholar 

  • Risk WP, Kim HC, Miller RD, Temkin H, Gangopadhyay S (2004) Optical waveguides with an aqueous core and a low-index nanoporous cladding. Opt Exp 12:6446–6455

    Article  Google Scholar 

  • Russell P (2003) Photonic crystal fiber. Science 299:358–362

    Article  Google Scholar 

  • Schelle B, Dreß P, Franke H, Klein KF, Slupek J (1999) Physical characterization of lightguide capillary cells. J Phys D Appl Phys 32:3157–3163

    Article  Google Scholar 

  • Schmidt H, Yin D, Barber JP, Hawkins AR (2005) Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids. IEEE J Sel Top Quantum Electron 11:519–527

    Article  Google Scholar 

  • Schmidt O, Bassler M, Kiesel P, Johnson NM, Doehler G (2006) Guiding light in fluids. Appl Phys Lett 88:151109

    Article  Google Scholar 

  • Smolka S, Barth M, Benson O (2007) Selectively coated photonic crystal fiber for highly sensitive fluorescence detection. Appl Phys Lett 90:111101

    Article  Google Scholar 

  • Soref RA, Cortesi E, Namavar F, Friedman L (1991a) Vertically integrated SOI waveguides. IEEE Photon Technol Lett 3:19–21

    Article  Google Scholar 

  • Soref RA, Schmidtchen J, Petermann K (1991b) Large single-mode rib waveguides in GeSi-Si and SOI. IEEE J Quantum Electron 27:1971–1974

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819

    Article  Google Scholar 

  • Temelkuran B, Hart SD, Benoit G, Joannopoulos, Fink Y (2002) Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature 420:650–653

    Article  Google Scholar 

  • Tiefenthaler K, Lukosz W (1989) Sensitivity of grating couplers as integrated-optical chemical sensors. J Opt Soc Am B 6:209

    Google Scholar 

  • Uranus HP, Hoekstra HJWM, van Groesen E (2006) Considerations on material composition for low-loss hollow-core integrated optical waveguides. Opt Commun 260:577–582

    Article  Google Scholar 

  • Vezenov DB, Mayers BT, Wolfe DB, Whitesides GM (2005) Integrated fluorescent light source for optofluidic applications. Appl Phys Lett 86:041104

    Article  Google Scholar 

  • White IM, Suter JD, Oveys H, Fan X, Smith TL, Zhang J, Koch BJ, Haase MA (2007) Universal coupling between metal-clad waveguides and optical ring resonators. Opt Exp 15:646–651

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and future of microfluidics. Nature 442:368

    Article  Google Scholar 

  • Winn JN, Fink J, Fan S, Joannopoulos JD (1998) Omnidirectional reflection from a one-dimensional photonic crystal. Opt Lett 23:1573

    Google Scholar 

  • Wolfe DB, Conroy RS, Garstecki P, Mayers BT, Fischbach MA, Paul KE, Prentiss M, Whitesides GM (2004) Dynamic control of liquid-core/liquid-cladding optical waveguides. PNAS 101:12434–12438

    Article  Google Scholar 

  • Wolfe DB, Vezenov DV, Mayers BT, Whitesides GM, Conroy RS, Prentiss MG (2005) Diffusion-controlled optical elements for optofluidics. Appl Phys Lett 87:181105

    Article  Google Scholar 

  • Xu Y, Lee RK, Yariv A (2000) Asymptotic analysis of Bragg fiber. Opt Lett 25:1756–1758

    Article  Google Scholar 

  • Xu Q, Almeida VR, Panepucci RR, Lipson M (2004) Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material Opt. Lett 29:1626–1628

    Google Scholar 

  • Yan H, Gu C, Yang C, Liu J, Jin G, Zhang J, Hou L, Yao Y (2006) Hollow core photonic crystal fiber surface-enhanced Raman probe. Appl Phys Lett 89:204101

    Article  Google Scholar 

  • Yeh P (2005) Optical waves in layered media, 2nd edn. Wiley, London

    Google Scholar 

  • Yeh P, Yariv A (1978) Bragg reflection waveguides. Opt Comm 19:427–430

    Article  Google Scholar 

  • Yeh P, Yariv A, Hong C (1977) Electromagnetic propagation in periodic stratified media. I. General theory J Opt Soc Am 67:423–438

    Google Scholar 

  • Yeh P, Yariv A, Marom E (1978) Theory of Bragg fiber. J Opt Soc Am 68:1196–1201

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Deamer DW, Schmidt H (2004) Integrated optical waveguides with liquid cores. Appl Phys Lett 85:3477–3479

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Schmidt H (2005a) Waveguide loss optimization in hollow-core ARROW waveguides. Opt Exp 13:9331–9336

    Article  Google Scholar 

  • Yin D, Barber JP, Lunt EJ, Hawkins AR, Schmidt H (2005b) Optical characterization of arch-shaped ARROW waveguides with liquid cores. Opt Exp 13:10564–10569

    Article  Google Scholar 

  • Yin D, Barber JP, Deamer DW, Hawkins AR, Schmidt H (2006a) Single-molecule detection sensitivity using planar integrated optics on a chip. Opt Lett 31:2136–2138

    Article  Google Scholar 

  • Yin D, Barber JP, Hawkins AR, Schmidt H (2006b) Single molecule sensitivity and electrically controlled fluorescence detection in integrated planar ARROW waveguides. 2006 Conference on Lasers and Electro-optics (CLEO)

  • Yin D, Lunt EJ, Barman A, Hawkins AR, Schmidt H (2007a) Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics. Opt Exp 15:7290–7295

    Article  Google Scholar 

  • Yin D, Lunt EJ, Rudenko MI, Deamer DW, Hawkins AR, Schmidt H (2007b) Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip. doi:10.1039/b708861b

  • Zhang D, Lien V, Berdichevsky Y, Choi J, Lo Y (2003) Fluidic adaptive lens with high focal length tunability. Appl Phys Lett 82:3171–3172

    Article  Google Scholar 

  • Zourob M, Mohr S, Treves Brown BJ, Fielden PR, MCDonnell M, Goddard NJ (2003) The development of metal clad leaky waveguide sensor for the detection of particles. Sens Actuators B 90:296–307

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of our colleagues D.W. Deamer, H.F. Noller, J.Z. Zhang, U. Hakanson, and students D. Yin, J.P, Barber, P. Measor, E. Lunt, M. Rudenko, and S. Kuehn. We also acknowledge funding for this work by the National Institutes of Health (NIH/NIBIB) under grants R21EB003430 and R01EB006097, the National Science Foundation (NSF) under grant ECS-0528730, a NASA/UARC Aligned Research Program (ARP) grant, a California Systemwide Biotechnology Research and Education Program Training Grant (UC-GREAT 2005-245), a National Academies Keck Futures Initiative Award (NAKFI-Nano14), and a grant from the David Huber Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Hawkins, A.R. Optofluidic waveguides: I. Concepts and implementations. Microfluid Nanofluid 4, 3–16 (2008). https://doi.org/10.1007/s10404-007-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-007-0199-7

Keywords

Navigation