Skip to main content
Log in

The effect of simulated microgravity on bacteria from the mir space station

  • Published:
Microgravity - Science and Technology Aims and scope Submit manuscript

Abstract

The effects of simulated microgravity on two bacterial isolates,Sphingobacterium thalpophilium andRalstonia pickettii (formerlyBurkholderia pickettii), originally recovered from water systems aboard the Mir space station were examined. These bacteria were inoculated into water, high and low concentrations of nutrient broth and subjected to simulated microgravity conditions.S. thalpophilium (which was motile and had flagella) showed no significant differences between simulated microgravity and the normal gravity control regardless of the method of enumeration and medium. In contrast, forR. pickettii (that was non-motile and lacked flagella), there were significantly higher numbers in high nutrient broth under simulated microgravity compared to normal gravity. Conversely, whenR. pikkettii was inoculated into water (i.e., starvation conditions) significantly lower numbers were found under simulated microgravity compared to normal gravity. Responses to microgravity depended on the strain used (e.g., the motile strain exhibited no response to microgravity, while the non-motile strain did), the method of enumeration, and the nutrient concentration of the medium. Under oligotrophic conditions, non-motile cells may remain in geostationary orbit and deplete nutrients in their vicinity, while in high nutrient medium, resources surrounding the cell may be sufficient so that high growth is observed until nutrients becoming limiting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, R.B., Klaus, D., Todd, P.: Effects of space flight, clinorotation, and centrifugication on the substrate utilization efficiency ofE. coli. Microgravity Sci. Tech., vol. 13, p. 24 (2002).

    Article  Google Scholar 

  2. Kacena, M.A., Merrell, G.A., Manfredi, B., Smith, E.E., Klaus, D. M. andTodd, P.: Bacterial growth in space flight: logistic growth curve parameters forEscherichia coli andBacillus subtilis. Appl. Environ. Microbiol., vol. 51, p. 229 (1999).

    Google Scholar 

  3. Kacena, M.A., Smith, E.E. andTodd, P.: Autolysis ofEscherichia coli andB. subtilis cells in low gravity. Appl. Microbiol. Biotechnol., vol. 52, p. 437 (1999).

    Article  Google Scholar 

  4. Klaus, D., Simske, S., Todd, P. andStodieck, L.: Investigation of space flight effects onEscherichia coli and a proposed model of underlying physical mechanisms. Microbiol., vol. 143, p. 449 (1997).

    Article  Google Scholar 

  5. Kacena, M.A., Manfredi, B. andTodd, P.: Effects of space flight and mixing on bacterial growth in low volume cultures. Microgravity Sci. Technol., vol. 12, p. 74 (1999).

    Google Scholar 

  6. Gasset, G., Tixador, R., Eche, B., Lapchine, L., Moatti, N., Toorop, P., Woldringh, C.: Growth and division ofEscherichia coli under microgravity conditions. Res. Microbiol., vol. 145, p. 111 (1994).

    Article  Google Scholar 

  7. Goldermann, M., Hanke, W.: Ion channel are sensitive to gravity changes. Micrograv. Sci. Tech., vol. 13, p. 35 (2001).

    Article  Google Scholar 

  8. Kacena, M. andTodd, P.: Growth characteristics ofE. coli andB. subtilis cultured on an agar substrate in microgravity. Micrograv. Sci. Technol., vol. 10, p. 58 (1997).

    Google Scholar 

  9. Takahashi, A., Ohnishi, K., Yokota, A., Kumagai, T., Nakano, T., Ohnishi, T.: Mutation frequency of plasmid DNA andEscherichia coli following long-term space flight on Mir. J. Radiation Res. (suppl.), vol. 43, p. S137 (2002).

  10. Klaus, D.M.: Clinostats and bioreactors. Gravit. Space Biol. Bull., vol 14, p. 55 (2001).

    Google Scholar 

  11. Klaus, D.M., Todd, P., Schatz, A.: (1998) Functional weightlessness during clinorotation of cell suspensions. Adv. Space Res., vol. 21, p. 1315 (1998).

    Article  Google Scholar 

  12. Erdmann, N., Effmert, U., Fulda, S., Oheim, S.: Effect of gravity changes on the cyanobacteriumSynechocystis sp. PCC 6803. Curr. Microbiol., vol. 35, p. 348 (1997).

    Article  Google Scholar 

  13. Fang, A., Pierson, D.L., Koenig, D.W., Mishra, S.K., Demain, A.L.: Effect of simulated microgravity and shear stress on microcin B17 production byEscherichia coli and on its excretion into the medium. Appl. Environ. Microbiol., vol. 63, p. 4090 (1997).

    Google Scholar 

  14. Häder, D.-P., Rosum A., Schäfer, J., Hemmersbach, R.: Graviperception in the flagellateEuglena gracilis during a shuttle space flight. J. Biotechnol., vol. 47, p. 261 (1996).

    Article  Google Scholar 

  15. Nickerson, C.A., Ott, C.M., Wilson, J.W., Ramamurthy, R., LeBlanc, C.L., Höner zu Bentrup, K., Hammond, T., Pierson, D.L.: Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J. Microbiol. Methods, vol. 54, p. 1 (2003).

    Article  Google Scholar 

  16. Thiruvenkatam, R., Scholz, C.: Synthesis of poly (ß-hydroxybutyrate) in simulated microgravity: an investigation of aeration profiles in shake flask and bioreactor. J. Polym. Environ., vol. 8, p. 155 (2000).

    Article  Google Scholar 

  17. Wilson, J.W., Ott, C.M., Ramamurthy, R., Porwollik, S., McClelland, M., Pierson, D.L. andNickerson, C.A.: Low-shear modeled microgravity alters theSalmonella enterica sevovar typhimurium stress response in an Rpo-S independent manner. Appl. Environ. Microbiol., vol. 68, p. 5408 (2002).

    Google Scholar 

  18. Gu, J.-D., Roman, M., Esselman, T., Mitchell, R.: The role of microbial biofilms in deterioration of space station candidate materials. Int. Biodeter. Biodegrad., vol. 41, p. 25 (1998).

    Article  Google Scholar 

  19. Pierson, D.L.: Microbial contamination of spacecraft. Gravit. Space Biol. Bull., vol. 14, p. 1 (2001).

    MathSciNet  Google Scholar 

  20. Boulos, L., M. Prévost, B. Barbeau, J. Coallier, R. Desjardins.:LIVE/DEAD®BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol. Methods vol. 37, p. 77 (1999).

    Article  Google Scholar 

  21. Porter, K. G., Y.S. Feig, Y.S.: The use of DAPI for identification and counting of aquatic microflora. Limnol. Oceanogr., vol. 25, p. 943 (1980).

    Article  Google Scholar 

  22. Lemke, M.J., McNamara, C.J., Leff, L.G.: Comparison of methods for concentration of bacterioplankton for in situ hybridization. J. Microbiol. Methods, vol. 29, p. 23 (1997).

    Article  Google Scholar 

  23. Amann, R.I., Ludwig, W., Schleifer, K.-H.: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., vol. 59, p. 143 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, P.W., Leff, L. The effect of simulated microgravity on bacteria from the mir space station. Microgravity Sci. Technol 15, 35–41 (2004). https://doi.org/10.1007/BF02870950

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02870950

Keywords

Navigation