Skip to main content
Log in

Bacteriorhodopsin crystal growth in reduced gravity - Results under the conditions, given in CPCF on board of a space shuttle, versus the conditions, given in DCAM on board of the Space Station Mir

  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

For the purpose of bio-electronics, bacteriorhodopsin was crystallized into two habits through liquid-liquid-diffusion, namely individual needles of up to 1.9 mm in length and needle bunch-like clusters of up to 4.9 mm in total length. In both the reduced gravity experiments performed, the morphology of the individual needles (crystal form A) had improved in terms of sharp needle edges and compact needle packing, compared to the parallel ground controls. For the long duration wide range low gravity condition in the "Diffusion-controlled Crystallization Apparatus for Microgravity (DCAM)" on Mir (STS-89 up), needle bunches on average were longer there than on the ground, while the compactness of the clusters, i.e. the average ratio of clustered length to clustered width was the reverse. Some exceptionally large individual needles were grown in DCAM. For the "Commercial Protein Crystallization Facility (CPCF)" in short duration high definition microgravity condition during a science mission of the Space Shuttle Discovery (STS-95), size and shape of the individual needles were homogeneous and superior to those of both the parallel ground controls and the results in DCAM. In CPCF, the average volume of the individual needles in suspension was increased by 50 % in microgravity compared to those in the ground control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oesterhelt, D., Bräuchle, C., Hampp, N.: Bacteriorhodopsin: a biological material for information processing. Q. Rev. Biophys., vol. 24, p. 425 (1991).

    Article  Google Scholar 

  2. Hampp, N. A.: Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material. Appl. Microbiol. Biotechnol., vol. 53, p. 633 (2000).

    Article  Google Scholar 

  3. Juchem, T., Hampp, N.: Non-destructive testing system based on bacterior-hodopsin films. 238. WE-Heraeus-Seminar (2000).

  4. Michel, H., Oesterhelt, D.: Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc. Natl. Acad. Sci. U.S.A., vol. 77, p. 1283 (1980).

    Article  Google Scholar 

  5. Landau, E. M., Rosenbusch, J. P.: Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. U.S.A., vol. 93, p. 14532 (1996).

    Article  Google Scholar 

  6. Luecke, H., Schobert, B., Richter, H. T., Cartailler, J. P., Lanyi, J. K.: Structure of bacteriorhodopsin at 1.55 Å, resolution. J. Mol. Biol., vol. 291, p. 899 (1999).

    Article  Google Scholar 

  7. Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P., Landau, E. M.: X-ray structure of bacterio-rhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, vol. 277, p. 1676 (1997).

    Article  Google Scholar 

  8. Michel, H.: Characterization and crystal packing of three-dimensional bacteriorhodopsin crystals. EMBO J., vol. 1, p. 1267 (1982).

    Google Scholar 

  9. Wagner, G., andLinhardt, R.: Liquid-liquid diffusion profiles in microgravity experiments, and crystal growth of the membrane protein bacteriorho dopsin. J. Crystal Growth, vol. 110, p. 114 (1991).

    Article  Google Scholar 

  10. Otalora, F., Garcia Ruiz, J. M.: Crystal growth studies in microgravity with the APCF. 1. Computer simulation of transport dynamics. J. Crystal Growth, vol. 182, p. 141 (1997).

    Article  Google Scholar 

  11. Ducruix, A. and Giegé, R.: Crystallization of Nucleic Acids and Proteins, Second Edition, Oxford Univ. Press (1999).

  12. Wagner, G.: Bacteriorhodopsin Crystal Growth under Microgravity Results of IML-1 and Spacehab-1 Experiments. ESA Journal, vol. 18, p. 25 (1994).

    Google Scholar 

  13. Dag, O., Ahari, H., Coombs, N., Jiang, T., Aroca-Ouellette, P. P., Petrov, S., Sokolov, I., Verma, A., Vovk, G., Young, D., Ozin, G. A., Reber, C., Pelletier, Y., Bedard, R. L.: Does microgravity influence self-assembly? Advanced Materials, vol. 9, p. 1133 (1997).

    Article  Google Scholar 

  14. Bosch, R., Lautenschlager, P., Potthast, L., Stapelmann, J.: Experiment equipment for protein crystallization inµg facilities. J. Crystal Growth, vol. 122, p. 310 (1992).

    Article  Google Scholar 

  15. Pletser, V., Stapelmann, J., Potthast, L., Bosch, R.: The protein crystallization diagnostics facility, a new european instrument to investigate biological macromolecular crystal growth on board the international space station. J. Cryst. Growth, vol. 196, p. 638 (1999).

    Article  Google Scholar 

  16. Carter, D. C., et al.: Diffusion-controlled crystallization apparatus for microgravity (DCAM): flight and ground-based applications. J. Crystal Growth, vol. 196, p. 602 (1999).

    Article  Google Scholar 

  17. Schertler, G. F. X.: Kristallisation von Bacteriorhodopsin. Charakterisierung des M-Intermediats im Kristall. Dissertation Universität München (1988), (Wissenschaftl. Forschungsbeiträge Biol., Biochem., Chem. 41).

  18. Michel, H.: Enzymes, Receptors and Carriers of Biological Membranes, in Azzi et al. (Eds.): Crystallization of two membrane proteins: bacteriorhodopsin and photosynthetic reaction centres. Springer-Verlag Berlin, Heidelberg, p. 39 (1984).

    Google Scholar 

  19. Neugebauer, D.-Ch., Zingsheim, H. P., Oesterhelt, D.: Recrystallization of the purple membrane in vivo and in vitro. J. Mol. Biol., vol. 123, p. 247 (1978).

    Article  Google Scholar 

  20. Neugebauer, D.-Ch., Zingsheim, H.-P., Oesterhelt: Biogenesis of purple membrane in halobacteria. Methods in Enzymology, vol. 97, p. 218 (1983).

    Article  Google Scholar 

  21. Schertler, G. F. X., Bartunik, H. D., Michel, H., Oesterhelt, D. J.: Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 Å resolution. Mol. Biol., vol. 234, p. 156 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Zörb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zörb, C., Weisert, A., Stapelmann, J. et al. Bacteriorhodopsin crystal growth in reduced gravity - Results under the conditions, given in CPCF on board of a space shuttle, versus the conditions, given in DCAM on board of the Space Station Mir. Microgravity sci. Technol. 13, 22 (2002). https://doi.org/10.1007/BF02872073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1007/BF02872073

Keywords

Navigation