Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T08:44:25.130Z Has data issue: false hasContentIssue false

Alpha, beta, or gamma: where does all the diversity go?

Published online by Cambridge University Press:  08 February 2016

J. John Sepkoski Jr.*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637

Abstract

Global taxonomic richness is affected by variation in three components: within-community, or alpha, diversity; between-community, or beta, diversity; and between-region, or gamma, diversity. A data set consisting of 505 faunal lists distributed among 40 stratigraphic intervals and six environmental zones was used to investigate how variation in alpha and beta diversity influenced global diversity through the Paleozoic, and especially during the Ordovician radiations. As first shown by Bambach (1977), alpha diversity increased by 50 to 70 percent in offshore marine environments during the Ordovician and then remained essentially constant for the remainder of the Paleozoic. The increase is insufficient, however, to account for the 300 percent rise observed in global generic diversity. It is shown that beta diversity among level, soft-bottom communities also increased significantly during the early Paleozoic. This change is related to enhanced habitat selection, and presumably increased overall specialization, among diversifying taxa during the Ordovician radiations. Combined with alpha diversity, the measured change in beta diversity still accounts for only about half of the increase in global diversity. Other sources of increase are probably not related to variation in gamma diversity but rather to appearance and/or expansion of organic reefs, hardground communities, bryozoan thickets, and crinoid gardens during the Ordovician.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ausich, W. I. and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I. and Bottjer, D. J. 1985. Phanerozoic tiering in suspension-feeding communities on soft substrata: implications for diversity. Pp. 255274. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science; Princeton, New Jersey.Google Scholar
Ausich, W. I., Krammer, T. W., and Lane, N. G. 1979. Fossil communities of the Borden (Mississippian) delta in Indiana and northern Kentucky. Journal of Paleontology 53:11821196.Google Scholar
Baarli, B. G. 1987. Benthic faunal associations in the Lower Silurian Solvik Formation of the Oslo-Asker Districts, Norway. Lethaia 20:7590.CrossRefGoogle Scholar
Bambach, R. K. 1977. Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3:152167.CrossRefGoogle Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic. Pp. 719746. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversification in marine faunas through the Phanerozoic. Pp. 191253. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science; Princeton, New Jersey.Google Scholar
Bambach, R. K. and Sepkoski, J. J. Jr. 1979. The increasing influence of biologic activity on sedimentary stratification through the Phanerozoic. Geological Society of America Abstracts with Program 11:383.Google Scholar
Boardman, D. R. II, Mapes, R. H., Yancey, T. E., and Malinky, J. M. 1984. A new model for allogenic community succession within North American Pennsylvanian cyclothems and implications on the black shale problem. Pp. 141182. In Hyne, N. J. (ed.), Limestones of the Mid-Continent. Tulsa Geological Society Special Publication No. 2.Google Scholar
Bottjer, D. J. and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400420.CrossRefGoogle Scholar
Boucot, A. J. 1975. Evolution and Extinction Rate Controls. Elsevier; Amsterdam. 427 pp.Google Scholar
Boucot, A. J. 1978. Community evolution and rates of cladogenesis. Evolutionary Biology 11:545655.Google Scholar
Boucot, A. J. 1983. Does evolution take place in an ecological vacuum? II. Journal of Paleontology 56:130.Google Scholar
Bretsky, P. W. 1968. Evolution of Paleozoic marine invertebrate communities. Science 159:12311233.CrossRefGoogle ScholarPubMed
Bretsky, P. W. 1969. Evolution of Paleozoic benthic marine invertebrate communities. Palaeogeography, Palaeoclimatology, Palaeoecology 6:4559.CrossRefGoogle Scholar
Brown, J. H. and Gibson, A. C. 1983. Biogeography. C. V. Mosby, Company; St. Louis. 643 pp.Google Scholar
Cisne, J. L. 1974. Evolution of the world fauna of aquatic free-living arthropods. Evolution 28:337366.CrossRefGoogle ScholarPubMed
Cocks, L. R. M. and McKerrow, W. S. 1978. Silurian. Pp. 93124. In McKerrow, W. S. (ed.), The Ecology of Fossils. MIT Press; Cambridge, Massachusetts.Google Scholar
Cocks, L. R. M. and Rickards, R. B. 1969. Five boreholes in Shropshire and the relationships of shelly and graptolitic facies in the Lower Silurian. Quarterly Journal of the Geological Society of London 124:213238.CrossRefGoogle Scholar
Cocks, L. R. M., Woodococks, H., Rickards, R. B., Temple, J. T., and Lane, P. D. 1984. The Llandovery Series of the type area. British Museum (Natural History) Bulletin, Geology 38:131182.Google Scholar
Cody, M. L. 1975. Towards a theory of continental species diversities. Pp. 214257. In Cody, M. L. and Diamond, J. M. (eds.), Ecology and Evolution of Communities. Belknap Press; Cambridge, Massachusetts.Google Scholar
Cracraft, J. 1982. A nonequilibrium theory for the rate-control of speciation and extinction and the origin of macroevolutionary patterns. Systematic Zoology 31:348365.CrossRefGoogle Scholar
Droser, M. L. 1987. Trends in extent and depth of bioturbation in Great Basin Precambrian–Ordovician strata, California, Nevada and Utah. Unpublished Ph.D. Dissertation, University of Southern California; Los Angeles. 365 pp.Google Scholar
Droser, M. L. and Bottjer, D. J. 1987. Early Phanerozoic stepwise increase in bioturbation. Geological Society of America Abstracts with Program 19:647648.Google Scholar
Fagerstrom, J. A. 1987. The Evolution of Reef Communities. John Wiley and Sons; New York. 600 pp.Google Scholar
Flessa, K. and Imbrie, J. 1973. Evolutionary pulsations: evidence from Phanerozoic diversity patterns. Pp. 247285. In Tarling, D. H. and Runcorn, S. K. (eds.), Implications of Continental Drift to the Earth Sciences, vol. 1. Academic Press; London.Google Scholar
Flessa, K. W., Powers, K. V., and Cisne, J. L. 1975. Specialization and evolutionary longevity in the Arthropoda. Paleobiology 1:7181.CrossRefGoogle Scholar
Heckel, P. H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America. American Association of Petroleum Geologists Bulletin 61:10451068.Google Scholar
Heckel, P. H. 1980. Paleogeography of eustatic model for deposition of midcontinent upper Pennsylvanian cyclothems. In Fouch, T. D. and Magathan, E. R. (eds.), Paleozoic Paleogeography of West-Central United States. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
Heckel, P. H. 1986. Sea-level curve for Pennsylvanian eustatic marine transgressive-regressive cycles along midcontinent outcrop belt, North America. Geology 14:330334.2.0.CO;2>CrossRefGoogle Scholar
Hurst, J. M. 1979. Evolution, succession and replacement in the type Upper Caradoc (Ordovician) benthic faunas of England. Palaeogeography, Palaeoclimatology, Palaeoecology 27:189246.CrossRefGoogle Scholar
Hurst, J. M. and Watkins, R. 1981. Lower Paleozoic clastic, level-bottom community organization and evolution based on Caradoc and Ludlow comparisons. Pp. 69100. In Gray, J., Boucot, A. J., and Berry, W. B. N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company; Stroudsburg, Pennsylvania.Google Scholar
Jaanusson, V. 1979. Ordovician. Pp.A136–A166. In Robison, R. A. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part A, Introduction. Geological Society of America; Boulder, Colorado.Google Scholar
Johnson, R. G. 1972. Conceptual models of benthic marine communities. Pp. 148159. In Schopf, T. J. M. (ed.), Models in Paleobiology. Freeman, Cooper and Company; San Francisco.Google Scholar
Kammer, T. W., Brett, C. E., Boardman, D. R. II, and Mapes, R. H. 1986. Ecologic stability of the dysaerobic biofacies during the late Paleozoic. Lethaia 19:109121.CrossRefGoogle Scholar
Larson, D. W. and Rhoads, D. C. 1983. The evolution of infaunal communities and sedimentary fabrics. Pp. 627648. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Lockley, M. G. 1983. A review of brachiopod-dominated palaeocommunities from the type Ordovician. Palaeontology 26:111145.Google Scholar
Ludvigsen, R. 1978. Middle Ordovician trilobite biofacies, southern MacKenzie Mountains. Pp. 133. In Stelck, C. R. and Chatterton, B. D. E. (eds.), Western and Arctic Canadian Biostratigraphy. Geological Association of Canada Special Paper 18.Google Scholar
Ludvigsen, R. and Westrop, S. R. 1983. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa 7:301319.CrossRefGoogle Scholar
MacArthur, R. H. 1965. Patterns of species diversity. Biological Reviews 40:510533.CrossRefGoogle Scholar
MacArthur, R. H. 1969. Patterns of communities in the tropics. Biological Journal of the Linnean Society 1:1930.CrossRefGoogle Scholar
MacDonald, K. B. 1976. Paleocommunities: toward some confidence limits. Pp. 87106. In Scott, R. W. and West, R. R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson and Ross Publishing Company; Stroudsburg, Pennsylvania.Google Scholar
Malinky, J. M. and Mapes, R. H. 1982. A test of the lagoonal versus offshore depositional models for midcontinent Pennsylvanian black and dark gray shales. Third North American Paleontological Convention, Proceedings 2:347352.Google Scholar
Merrill, G. K. and Martin, M. D. 1976. Environmental control of conodont distribution in the Bond and Mattoon Formations (Pennsylvanian, Missourian) northern Illinois. Pp. 243271. In Barnes, C. R. (ed.), Conodont Paleoecology. Geological Association of Canada Special Publication 15.Google Scholar
Newell, N. D. 1971. An outline of tropical organic reefs. American Museum of Natural History Novitates 2465:137.Google Scholar
Nilsson, R. 1977. A boring through Middle and Upper Ordovician strata at Koängen in western Scania, southern Sweden. Sveriges Geologiska Undersökning, Series C, 71(8).Google Scholar
Palmer, T. J. 1982. Cambrian to Cretaceous changes in hard ground communities. Lethaia 15:309323.CrossRefGoogle Scholar
Pielou, E. C. 1975. Ecological Diversity. Wiley; New York. 165 pp.Google Scholar
Pitcher, M. 1971. Middle Ordovician reef assemblages. North American Paleontological Convention, Chicago, 1969, Proceedings, Part J:13411357.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11:4252.CrossRefGoogle Scholar
Rosenzweig, M. 1971. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171:385387.CrossRefGoogle ScholarPubMed
Schopf, T. J. M. 1979. The role of biogeographic provinces in regulating marine faunal diversity through geologic time. Pp. 449457. In Gray, J. and Boucot, A. J. (eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press; Corvallis, Oregon.Google Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioral diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 4:233245.Google Scholar
Seilacher, A. 1977. Evolution of trace fossil communities. Pp. 359376. In Hallam, A. (ed.), Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Sepkoski, J. J. Jr. 1974. Quantified coefficients of association and measurement of similarity. Mathematical Geology 6:135152.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity, II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222252.Google Scholar
Sepkoski, J. J. Jr. 1981. The uniqueness of the Cambrian fauna. Pp. 203207. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. United States Geological Survey Open-File Report 81–743.Google Scholar
Sepkoski, J. J. Jr. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna. Pp. 371385. In Einsele, G. and Seilacher, A. (eds.), Cyclic and Event Stratification. Springer-Verlag; Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295. In Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer-Verlag; Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Environmental trends in extinction during the Phanerozoic. Science 235:6466.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic benthic communities in space and time. Pp. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press and Pacific Division, American Association for the Advancement of Science; Princeton, New Jersey.Google Scholar
Sepkoski, J. J. Jr. and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations. Pp. 673717. In Tevesz, M. J. S. and McCall, P. M. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum; New York.CrossRefGoogle Scholar
Seposki, J. J. Jr., Bambach, R. K., Raup, D. M., and Valentine, W. 1981. Phanerozoic marine diversity and the fossil record. Nature 293:435437.CrossRefGoogle Scholar
Sheehan, P. M. 1975. Brachiopod synecology in a time of crisis (Late Ordovician–Early Silurian). Paleobiology 1:205212.CrossRefGoogle Scholar
Sheehan, P. M. 1980. Paleogeography and marine communities of the Silurian carbonate shelf in Utah and Nevada. Pp. 1937. In Fouch, T. D. and Magathan, E. R. (eds.), Paleozoic Paleogeography of West-Central United States. Rocky Mountain Section, Society of Economic Paleontologists and Mineralogists.Google Scholar
Sheehan, P. M. 1982. Brachiopod macroevolution at the Ordovician-Silurian boundary. Third North American Paleontological Convention, Proceedings 2:477481.Google Scholar
Sheehan, P. M. 1985. Reefs are not so different—they follow the evolutionary pattern of level-bottom communities. Geology 13:4649.2.0.CO;2>CrossRefGoogle Scholar
Tilman, D. 1982. Resource Competition and Community Structure. Monographs in Population Biology 17. Princeton University Press; Princeton, New Jersey. 296 pp.Google Scholar
Toomey, D. F. 1981. Organic-buildup constructional capability in Lower Ordovician and late Paleozoic mounds. Pp. 3568. In Gray, J., Boucot, A. J., and Berry, W. B. N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company; Stroudsburg, Pennsylvania.Google Scholar
Tramer, E. J. 1974. On latitudinal gradients in avian diversity. Condor 76:123130.CrossRefGoogle Scholar
Valentine, J. W. 1969. Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Palaeontology 12:684709.Google Scholar
Valentine, J. W. 1970. How many marine invertebrate species? A new approximation. Journal of Paleontology 44:410415.Google Scholar
Valentine, J. W. 1971. Plate tectonics and shallow marine diversity and endemism, an actualistic model. Systematic Zoology 20:253264.CrossRefGoogle Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice-Hall; Englewood Cliffs, New Jersey. 511 pp.Google Scholar
Valentine, J. W. and Moores, E. M. 1970. Plate tectonic regulation of biotic diversity and sea level: a model. Nature 228:657659.CrossRefGoogle Scholar
Valentine, J. W. and Moores, E. M. 1972. Global tectonics and the fossil record. Journal of Geology 80:167184.CrossRefGoogle Scholar
Valentine, J. W., Foin, T. C., and Peart, D. 1978. A provincial model of Phanerozoic marine diversity. Paleobiology 4:5566.CrossRefGoogle Scholar
Watkins, R. 1979. Benthic community organization in the Ludlow Series of the Welsh Borderland. British Museum (Natural History) Bulletin, Geology 31:175280.Google Scholar
Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279338.CrossRefGoogle Scholar
Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213251.CrossRefGoogle Scholar
Whittaker, R. H. 1975. Communities and Ecosystems, 2nd ed. Macmillan; New York. 385 pp.Google Scholar
Whittaker, R. H. 1977. Evolution of species diversity in land communities. Evolutionary Biology 10:167.Google Scholar
Wilson, J. L. 1975. Carbonate Facies in Geologic History. Springer-Verlag; New York. 471 pp.CrossRefGoogle Scholar
Yancey, T. E. and Stevens, C. H. 1981. Early Permian fossil communities in northeastern Nevada and northwestern Utah. Pp. 243269. In Gray, J., Boucot, A. J., and Berry, W. B. N. (eds.), Communities of the Past. Hutchinson Ross Publishing Company; Stroudsburg, Pennsylvania.Google Scholar
Yochelson, E. L. 1968. Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations. United States Geological Survey Professional Paper 313D:D571–D660.Google Scholar
Ziegler, A. M. 1965. Silurian marine communities and their environmental significance. Nature 207:270272.CrossRefGoogle Scholar
Ziegler, A. M., Bambach, R. K., Parrish, J. T., Barrett, S. F., Gierlowski, E. H., Parker, W. C., Raymond, A., and Sepkoski, J. J. Jr. 1981. Paleozoic biogeography and climatology. Pp. 231266. In Niklas, K. J. (ed.), Paleobotany, Paleoecology, and Evolution, vol. 2. Praeger; New York.Google Scholar
Ziegler, A. M., Newall, G., Halleck, M. S., and Bambach, R. K. 1971. Repeated community-sediment patterns in the Silurian of the northern Appalachian Basin. Geological Society of America Abstracts with Program 3:760761.Google Scholar