Skip to main content
Log in

The excitability of plant cells: With a special emphasis on characean internodal cells

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

This review describes the basic principles of electrophysiology using the generation of an action potential in characean internodal cells as a pedagogical tool. Electrophysiology has proven to be a powerful tool in understanding animal physiology and development, yet it has been virtually neglected in the study of plant physiology and development. This review is, in essence, a written account of my personal journey over the past five years to understand the basic principles of electrophysiology so that I can apply them to the study of plant physiology and development.

My formal background is in classical botany and cell biology. I have learned electrophysiology by reading many books on physics written for the lay person and by talking informally with many patient biophysicists. I have written this review for the botanist who is unfamiliar with the basics of membrane biology but would like to know that she or he can become familiar with the latest information without much effort. I also wrote it for the neurophysiologist who is proficient in membrane biology but knows little about plant biology (but may want to teach one lecture on “plant action potentials”). And lastly, I wrote this for people interested in the history of science and how the studies of electrical and chemical communication in physiology and development progressed in the botanical and zoological disciplines.

Übersicht

Dieser Überblick beschreibt die Grundprinzipen der Electrophysiologie unter Verwendung eines Aktionspotentials in internodalen Zellen der characean Algen als pädagogeshes Mittel. Die Elektrophysiologie hat sich beim Verständnis von Tierphysiologie und entwicklung als wirksames Mittel erwiesen; dennoch ist sie bisher beim Studium der Pflanzenphysiologie und entwicklung praktish vernachlässigt worden. Dieser Überblick ist im Wesentlichen ein schriftlichen Bericht meiner persönlichen Bemühungen in den letzten fünf Jahren die Grungprinzipen der Electrophysiologie zu verstehen, um sie auf das Studium der Pflanzenphysiologie und entwicklung anzuwenden.

Meine Spezialität ist klassische Botanik und Zellbiologie. Elektrophysiologie habe ich durch das Lesen von vielen Physikbüchern für den Laien erlerut; daneben hatte ich auch die Gelengheit, informell mit vielen geduldigen Biophysikern darüber zu sprechen. Ich habe diesen Überblick für den Botaniker geschreiben, der mit den Grundlagen der Membranbiologie nicht vertraut ist, der aber wissen möchte, dass er/sie ohne allerzu grossen Aufwand mit dem neuesten Stand der Wissenschaft vertraut werden kann. Ich habe ihn weiterhin für den Neurophysiologen geschrieben, der mit der Membranphysiologie wohl vertraut ist, der aber wenig über Pflanzenbiologie weiss (aber velleicht eine Vorlesung über “Pflanzenaktionspotentials” halten möchte). Schlieslich habe ich ihn auch für den Leser geschrieben, der sich für die Wissenschaftsgeschichte interessiert und dafür, wie das Studium der Elektrischen und chemischen Kommunikation in der Physiologie und Entwicklung in den botanischen und zoologischen Disziplinen fortgeschritten ist.

Resumen

Este estudio analiza los principios básicos de electrofisiología utilizando la generatión de un potential de actión en células internodiales de algas characean como herramienta pedagógica. Electrofisiología ha demostrado ser un excelente método para el entendimiento de la fisiología y del desarrollo animal pero ha sido ignorada en el estudio de la fisiología y del desarrollo de plantas. Este estudio es, esencialmente, un testimonio de mi experiencia personal durante los últimos cinco años en los que he estado estudiando los principios básicos de electrofisiología para poder aplicarlos al estudio de fisiología y desarrollo de plantas.

Mis estudios se concentraron en botánica clásica y biología celular. He aprendido electrofisiología a base de leer muchos libros de física escritos para gente sin gran conocimiento de la materia, además he tenido el placer de hablar informalmente con muchos biofísicos de gran paciencia. He escrito este estudio para el botánico que desconoce la base de biologfa membranal pero al que le gustaría saber que él o ella puede familiarizarse con la informatión más actual sin mucho esfuerzo. También lo escribí para el neurofisiólogo, experto en biología membranal, pero que no sabe mucho sobre biología de plantas (y que desee enseñar una clase sobre los “potenciales de actión de las plantas”). Y finalmente, escri’i esto para gente interesada en la historia de la ciencia y en cómo los estudios de comunicación eléctrica y química en la fisiología y el desarrollo progresaron en las disciplinas zoolígicas y botánicas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Adrian, E. D. &D. W. Bronk. 1928. The discharge of impulses in moter nerve fibres. I. Impulses in single fibres of the phrenic nerve. J. Physiol.66: 81–101.

    PubMed  CAS  Google Scholar 

  • Agin, D. P. 1972. Perspectives in membrane biophysics. A tribute to Kenneth S. Cole. Gordon and breach Science Publishers, New York.

    Google Scholar 

  • Aimi, R. 1963. Studies on the irritability of the pulvinus ofMimosa pudica. Bot. Mag. (Tokyo)76: 374–380.

    Google Scholar 

  • Allen, N. S. &R. D. Allen. 1978. CytoPl.asmic streaming in green Pl.ants. Annual Rev. Biophys. Bioengin.7: 497–526.

    Article  CAS  Google Scholar 

  • Allen, R. D. 1969. Mechanism of the seismonastic reaction inMimosa pudica. Pl. Physiol.44: 1101–1107.

    CAS  Google Scholar 

  • American Society for Testing and Materials (ASTM). 1974. Evolution of the International Practical Temperature Scale of 1968. ASTM Special Technical Publication 565. ASTM, Philadelphia, Pennsylvania.

    Google Scholar 

  • Amino, S. &M. Tazawa. 1989. Dependence of tonoplast transport of amino acids on vacuolar pH inChara cells. Proc. Japan Acad. B.65: 34–37.

    Article  CAS  Google Scholar 

  • Amrhein, N. 1977. The current status of cyclic AMP in higher plants. Annual Rev. Pl. Physiol.28: 123–132.

    Article  CAS  Google Scholar 

  • Andjus, P. R. &D. Vucelic. 1990. D2O-induced cell excitation. J. Membr. Biol.115: 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Auger, D. 1933. Contribution à l’étude de la propagation de la variation électrique chez les Characées. C. R. Séanc. Soc. Biol.113: 1437–1440.

    Google Scholar 

  • Backster, C. 1968. Evidence of a primary perception in plant life. Int. J. Parapsych.10: 329–348.

    Google Scholar 

  • Bandurski, R. S. 1991. Cell biophysics and plant gravitropism. ASGSB Bull.42: 51–64.

    Google Scholar 

  • Barber, M. A. 1911a. A technic for the inoculation of bacteria and other substances into living cells. J. Infect. Dis.8: 348–360.

    Google Scholar 

  • —. 1911b. The effect on the protoplasm ofNitella of various chemical substances and of microorganisms introduced into the cavity of the living cell. J. Infect. Dis.9: 117–129.

    CAS  Google Scholar 

  • Barry, P. H. 1970a. Volume flows and pressure changes during an action potential in cells ofChara australis. I. Experimental results. J. Membr. Biol.3: 313–334.

    Article  CAS  Google Scholar 

  • —. 1970b. Volume flows and pressure changes during an action potential in cells ofChara australis. II. Theoretical considerations. J. Membr. Biol.3: 335–371.

    Article  CAS  Google Scholar 

  • Barry, W. H. 1968. Coupling of excitation and cessation of cyclosis inNitella: Role of divalent cations. J. Cell. Physiol.72: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Bates, G. W. &M. H. M. Goldsmith. 1983. Rapid response of the plasma-membrane potential in oat coleoptiles to auxin and other weak acids. Planta159: 231–237.

    Article  CAS  Google Scholar 

  • Beilby, M. J. 1984. Calcium and plant action potentials. Pl. Cell Environm.7: 415–421.

    Article  CAS  Google Scholar 

  • — &M. A. Bisson. 1992.Chara plasmalemma at high pH: Voltage dependence of the conductance at rest and during excitation. J. Membr. Biol.125: 25–39.

    PubMed  CAS  Google Scholar 

  • — &H. G. L. Coster. 1979a. The action potential inChara corallina. II. Two activation-inactivation transients in voltage clamps of the plasmalemma. Austral. J. Pl. Physiol.6: 323–335.

    CAS  Google Scholar 

  • &—. 1979b. The action potential inChara corallina. III. The Hodgkin-Huxley parameters for the plasmalemma. Austral. J. Pl. Physiol.6: 337–353.

    CAS  Google Scholar 

  • —,T. Mimura, &T. Shimmen. 1993. The proton pump, high pH channels, and excitation: Voltage clamp studies of intact and perfused cells ofNitellopsis obtusa. Protoplasma175: 144–152.

    Article  CAS  Google Scholar 

  • — &V. A. Shepherd. 1989. Cytoplasm-enriched fragments ofChara: Structure and electrophysiology. Protoplasma148: 150–163.

    Article  Google Scholar 

  • Belton, P. &C. Van Netten. 1971. The effects of pharmacological agents on the electrical responses of cells ofNitella flexilis. Canad. J. Physiol. Pharmacol.49: 824–832.

    CAS  Google Scholar 

  • Benolken, R. M. &S. L. Jacobson. 1970. Response properties of a sensory hair excised from Venus’ fly-trap. J. Gen. Physiol.56: 64–82.

    Article  PubMed  CAS  Google Scholar 

  • Berg, H. C. 1993. Random walks in biology. Expanded edition. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Bergethon, P. R. &E. R. Simons. 1990. Biophysical chemistry. Molecules to membranes. Springer-Verlag, New York.

    Google Scholar 

  • Bernard, C. 1974. Lectures on the phenomena of life common to animals and plants. Vol. 1. Trans. by H. E. Hoff, R. Guillemin & L. Guillemin. Charles C. Thomas, Springfield, IL.

  • Bernstein, J. 1912. Elektrobiologie. Die Lehre von den elektrischen Vorgängen im Organismus auf moderner Grundlage dargestellt. Vieweg, Braunschweig.

    Google Scholar 

  • Bialek, W. 1987. Physical limits to sensation and perception. Annual Rev. Biophysics Biophys. Chem.16: 455–478.

    Article  CAS  Google Scholar 

  • Bisson, M. A. &D. Bartholomew. 1984. Osmoregulation or turgor regulation inChara? Pl. Physiol.74: 252–255.

    CAS  Google Scholar 

  • —,A. Siegel, R. Chau, S. A. Gelsomino &S. L. Herdic. 1991. Distribution of charasomes inChara: Banding pattern and effect of photosynthetic inhibitors. Austral. J. Pl. Physiol.18: 81–93.

    Google Scholar 

  • — &N. A. Walker. 1980. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH-. J. Membr. Biol.56: 11967.

    Google Scholar 

  • &—. 1981. Thehyperpolarization of theChara membrane at high pH: Effects of external potassium, internal pH, and DCCD. J. Exp. Bot.32: 951–971.

    Article  Google Scholar 

  • &—. 1982. Control of passive permeability in theChara plasmalemma. J. Exp. Bot.33: 520–532.

    Article  CAS  Google Scholar 

  • Blatt, F. J. &Y. Kuo. 1976. Absence of biomagnetic effects inNitella. Biophys. J.16: 441–444.

    PubMed  CAS  Google Scholar 

  • Blatt, M. R., M. J. Beilby &M. Tester. 1990. Voltage dependence of theChara proton pump revealed by current-voltage measurement during rapid metabolic blockade with cyanide. J. Membr. Biol.114: 205–223.

    Article  PubMed  CAS  Google Scholar 

  • Blinks, L. R. 1936. The effect of current flow on bioelectric potential. III.Nitella. J. Gen. Physiol.20: 229–265.

    Article  CAS  PubMed  Google Scholar 

  • Block, S. M. 1992. Biophysical principles of sensory transduction. Pages 1–17in D. P. Corey & S. D. Roper (eds.), Sensory transduction. Society of General Physiologists. 45th Annual Symposium, Marine Biological Laboratory, Woods Hole, Massachusetts. Rockefeller University Press, New York.

    Google Scholar 

  • Bohr, N. 1933. Light and life. Nature131: 421–423, 457–459.

    Article  Google Scholar 

  • Bose, J. C. 1906. plant response as a means of physiological investigation. Longmans, Green, and Co., London.

    Google Scholar 

  • —. 1913. Researches on irritability of plants. Longmans, Green, and Co., London.

    Google Scholar 

  • —. 1926. The nervous mechanism of plants. Longmans, Green, and Co., London.

    Google Scholar 

  • —. 1985. Life movements in plants. B. R. Publishing, Dehli.

    Google Scholar 

  • Boysen-Jensen, P. 1936. Growth hormones in plants. Translated and revised by G. S. Avery Jr. & P. R. Burkholder. McGraw-Hill, New York.

    Google Scholar 

  • Brauner, L. &W. Rau. 1966. Versuche zur Bewegungsphysiologie der Pflanzen. Springer-Verlag, Berlin.

    Google Scholar 

  • Brewster, D. 1846. The martyrs of science, or The lives of Galileo, Tycho Brahe, and Kepler. John Murray, London.

    Google Scholar 

  • Briggs, G. E. 1957. Some aspects of free space in plant tissues. New Phytol.56: 305–324.

    Article  Google Scholar 

  • — &J. B. S. Haldane. 1925. A note on the kinetics of enzyme action. Biochem. J.19: 338–339.

    PubMed  CAS  Google Scholar 

  • — &A. B. Hope. 1958. Electric potential differences and the Donnan equilibrium in plant tissues. J. Exp. Bot.9: 365–371.

    Article  CAS  Google Scholar 

  • — &R. N. Robertson. 1961. Electrolytes and plant cells. F. A. Davis, Philadelphia, Pennsylvania.

    Google Scholar 

  • — &R. N. Robertson. 1948. Diffusion and absorption in disks of plant tissue. New Phytol.47: 265–283.

    Article  Google Scholar 

  • &—. 1957. Apparent free space. Annual Rev. Pl. Physiol.8: 11–30.

    Article  CAS  Google Scholar 

  • Brillouin, L. 1949. Life, thermodynamics, and cybernetics. Amer. Scientist37: 554–568.

    CAS  Google Scholar 

  • —. 1950. Thermodynamics and information theory. Amer. Scientist38: 594.

    Google Scholar 

  • —. 1956. Science and information theory. Academic Press, New York.

    Google Scholar 

  • —. 1959. Information theory and its applications to fundamental problems in physics. Nature183: 501–502.

    Article  Google Scholar 

  • —. 1964. Scientific uncertainty, and information. Academic Press, New York.

    Google Scholar 

  • Brooks, M. M. 1939. Effect of certain radioactive elements on the metabolism of cells. Proc. Soc. Exp. Biol.42: 558–559.

    CAS  Google Scholar 

  • Brooks, S. C. 1939. Ion exchanges in accumulation and loss of certain ions by the living proto◊asm ofNitella. J. Cell. Comp. Physiol.14: 383–401.

    Article  CAS  Google Scholar 

  • — &M. M. Brooks. 1941. The permeability of living cells. Gebrüder-Borntraeger, Berlin-Zehlendorf.

    Google Scholar 

  • — &S. Gelfan. 1928. Bioelectric potentials inNitella. Proto◊asma5: 86–96.

    Article  CAS  Google Scholar 

  • Brown, E. G. &R. P. Newton. 1973. Occurrence of adenosine 3’5’-cyclic monophosphate in plant tissues. Phytochemistry12: 2683–2685.

    Article  CAS  Google Scholar 

  • Brown, G. H. &J. J. Wolton. 1979. Liquid crystals and biological structures. Academic Press, New York.

    Google Scholar 

  • Brown, R. 1828. A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Richard Taylor, London.

    Google Scholar 

  • —. 1866. Additional remarks on active molecules. [1829.] Pages 479–486in The miscellaneous works of Robert Brown. The Ray Society and R. Hardwicke, London.

    Google Scholar 

  • Brown, S. O. 1938. Relation between light and the electric polarity ofChara. Pl. Physiol.13: 713–736.

    CAS  Google Scholar 

  • Brown, W. H. &L. W. Sharp. 1910. The closing response inDionaea. Bot. Gaz.49: 290–302.

    Article  Google Scholar 

  • Buchen, B., Z. Hejnowicz, M. Braun &A. Sievers. 1991. Cytoplasmic streaming inChara rhizoids. Studies in a reduced gravitational field during parabolic flights of rockets. Protoplasma165: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • —,M. Braun, Z. Hejnowicz &A. Sievers. 1993. Statoliths pull on microfilaments. Experiments under microgravity. Protoplasma172: 38–42.

    Article  PubMed  CAS  Google Scholar 

  • Bunning, E. 1939. Die Physiologie des Wachstrums und der Bewegungen. Julius Springer, Berlin.

    Google Scholar 

  • —. 1948. Entwicklungs- und Bewegungsphysiologie der Pflanze. Springer-Verlag, Berlin.

    Google Scholar 

  • —. 1953. Entwicklungs- und Bewegungsphysiologie der Pflanze. Ed. 3. Springer-Verlag, Berlin.

    Google Scholar 

  • Burdon-Sanderson, J. 1873. Note on the electrical phenomena which accompany stimulation of leaf ofDionaea muscipula. Proc. Roy. Soc. London21: 495–596.

    Google Scholar 

  • — &F. J. M. Page. 1876. On the mechanical effects and on the electrical disturbance consequent on excitation of leaf ofDionaea muscipula. Proc. Roy. Soc. London25: 411–434.

    Article  Google Scholar 

  • Btttschli, O. 1894. Investigations on microscopic foams and on protoplasm. Experiments & observations directed towards a solution of the question of the physical conditions of the phenomena of life. Translated by E. A. Minchin. Adam and Charles Black, London.

    Google Scholar 

  • Chapman, R. L. &M. A. Buchheim. 1991. Ribosomal RNA gene sequences: Analysis and significance in the phylogeny and taxonomy of green algae. Crit. Rev. Pl. Sci.10: 343–368.

    CAS  Google Scholar 

  • Cleland, R. E., H. B. A. Prins, J. R. Harper &N. Higinbotham. 1977. Rapid hormone-induced hyperpolarization of the oat coleoptile potential. Pl. Physiol.59: 395–397.

    CAS  Google Scholar 

  • Cohen, I. B. 1941. Benjamin Franklin’s experiments. A new edition of Franklin’s experiments and observations on electricity. Edited, with a critical and historical introduction, by I. B. Cohen. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Cole, K. S. 1928. Electric impedance of suspensions of spheres. J. Gen. Physiol.12: 29–36.

    Article  CAS  PubMed  Google Scholar 

  • —. 1968. Membranes, ions, and impulses: A chapter of classical biophysics. University of California Press, Berkeley.

    Google Scholar 

  • —. 1970. Dielectric properties of living membranes. Pages 1–15in F. Snell, J. Wolken, G. Iverson & J. Lam (eds.), Physical principles of biological membranes. Proceedings of the Coral Gables Conference on Physical Principles of Biological Membranes. Gordon and Breach, New York.

    Google Scholar 

  • — &R. H. Cole. 1936a. Electrical impedance ofAstenas eggs. J. Gen. Physiol.19: 609–623.

    Article  CAS  PubMed  Google Scholar 

  • &—. 1936b. Electrical impedance ofArbacia eggs. J. Gen. Physiol.19: 625–632.

    Article  CAS  PubMed  Google Scholar 

  • — &H. J. Curtis. 1938. Electrical impedance ofNitella during activity. J. Gen. Physiol.22: 37–64.

    Article  PubMed  Google Scholar 

  • &—. 1939. Electrical impedance of the squid giant axon during activity. J. Gen. Physiol.22: 649–670.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, H. A. 1986. Chloride currents inChara—A patch-clamp study. J. Membr. Biol.93: 55–61.

    Article  CAS  Google Scholar 

  • Collander, R. 1949. The permeability of plantprotoplasts to small molecules. Physiol. pl2: 300–311.

    Article  Google Scholar 

  • —. 1954. The permeability ofNitella cells to non-electrolytes. Physiol. Pl.7: 420–445.

    Article  CAS  Google Scholar 

  • Corti, B. 1774. Osservazioni microscopiche sulla tremella e sulla circolacione del fluido in una planta acquajuola. Apresso Giuseppe Rocchi, Lucca.

    Google Scholar 

  • Cosgrove, D. J. 1993a. How do plant walls extend? Pl. Physiol.102: 1–6.

    CAS  Google Scholar 

  • —. 1993b. Wall extensibility: Its nature measurement and relationship to plant cell growth. New Phytol.124: 1–23.

    Article  PubMed  CAS  Google Scholar 

  • —. 1993c. Water uptake by growing cells: An assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int. J. Pl. Sci.154: 10–21.

    Article  CAS  Google Scholar 

  • Coster, H. G. L. 1966. Chloride in cells ofChara australis. Austral. J. Biol. Sci.19: 545–554.

    CAS  Google Scholar 

  • Cote, R., J. F. Thain &D. S. Fensom. 1987. Increase in electrical resistance of plasmodesmata ofChara induced by an applied pressure gradient across nodes. Canad. J. Bot.65: 509–511.

    Google Scholar 

  • Curtis, H. J. &K. S. Cole. 1937. Transverse electric impedance ofNitella. J. Gen. Physiol.21: 189–201.

    Article  CAS  PubMed  Google Scholar 

  • Dainty, J. 1962. Ion transport and electrical potentials in plant cells. Annual Rev. Pl. Physiol.13: 379–402.

    Article  CAS  Google Scholar 

  • —. 1963a. The polar permeability of plant cell membranes to water. Protoplasma57: 220–228.

    Article  CAS  Google Scholar 

  • —. 1963b. Water relations of plant cells. Advances Bot. Res.1: 279–326.

    Article  CAS  Google Scholar 

  • — &B. Z. Ginzburg. 1964a. The measurement of hydraulic conductivity (osmotic permeability to water) of internodal characean cells by means of transcellular osmosis. Biochim. Biophys. Acta79: 102–111.

    PubMed  CAS  Google Scholar 

  • &—. 1964b. The permeability of the cell membrane ofNitella translucens to urea, and the effect of high concentrations of sucrose on this permeability. Biochim. Biophys. Acta79: 112–121.

    PubMed  CAS  Google Scholar 

  • &—. 1964c. The reflection coefficient of plant cell membranes for certain solutes. Biochim. Biophys. Acta79: 129–137.

    PubMed  CAS  Google Scholar 

  • — &A. B. Hope. 1959. The water permeability of cells ofChara australis R. Br. Austral. J. Biol. Sci.12: 136–145.

    Google Scholar 

  • Darwin, C. 1893. Insectivorous plants. Ed. 2. J. Murray, London.

    Google Scholar 

  • —. 1966. The power of movement in plants. [1881.] Da Capo Press, New York.

    Google Scholar 

  • Davies, E. 1987. Action potentials as multifunctional signals in plants: A unifying hypothesis to explain apparently disparate wound responses. Pl., Cell Environm.10: 623–631.

    Article  Google Scholar 

  • —. 1993a. Intercellular and intracellular signals and their transduction via the plasma membranecytoskeleton interface. Seminars in Cell Biology4: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • -. 1993b. Leaf to root, come in please. The World & I (Oct.): 185–191.

  • Dean, R. B., H. J. Curtis &K. S. Cole. 1940. Impedance of bimolecular films. Science91: 50–51.

    Article  PubMed  CAS  Google Scholar 

  • Delbrück, M. 1970. A physicist’s renewed look at biology: Twenty years later. Science168: 1312–1315.

    Article  PubMed  Google Scholar 

  • Dettbarn, W. D. 1962. Acetylcholinesterase activity inNitella. Nature194: 1175–1176.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, J. M. &A. K. Solomon. 1959. Intracellular potassium compartments inNitella axillaris. J. Gen. Physiol.42: 1105–1121.

    Article  PubMed  CAS  Google Scholar 

  • Ding, D.-Q. &M. Tazawa. 1989. Influence of cytoplasmic streaming and turgor pressure gradient on the transnodal transport of rubidium and electrical conductance inChara corallina. Pl. Cell Physiol.30: 739–748.

    Google Scholar 

  • —,S. Amino, T. Mimura, K. Sakano, T. Nagata &M. Tazawa. 1992. Quantitative analysis of intracellularly transported photoassimilates inChara corallina. J. Exp. Bot.43: 1045–1051.

    Article  CAS  Google Scholar 

  • —,T. Mimura, S. Amino &M. Tazawa. 1991. Intercellular transport and photosynthetic differentiation inChara corallina. J. Exp. Bot.42: 33–38.

    Article  CAS  Google Scholar 

  • Di Palma, J. R., R. Mohl &W. J. R. Best. 1961. Action potential and contraction ofDionaea muscipula (Venus’ flytrap). Science133: 878–879.

    Article  Google Scholar 

  • Donnan, F. G. 1927. Concerning the applicability of thermodynamics to the phenomena of life. J. Gen. Physiol.8: 685–688.

    Article  CAS  PubMed  Google Scholar 

  • Dorn, A. &M. H. Weisenseel. 1984. Growth and the current pattern around internodal cells ofNitella flexilis L. J. Exp. Bot.35: 373–383.

    Article  Google Scholar 

  • Duncan, G. 1990. Physics in the life sciences. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Ebashi, S. 1976. Excitation-contraction coupling. Annual Rev. Physiol.38: 293–313.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R., D. Randall &G. Augustine. 1988. Animal physiology. Mechanisms and adaptations. Ed. 3. W. H. Freeman, New York.

    Google Scholar 

  • Einstein, A. 1926. Investigations on the theory of the Brownian movement. Methuen & Co., London.

    Google Scholar 

  • Eisner, T. 1981. Leaf folding in a sensitive plant: A defensive thorn-exposure mechanism? Proc. Natl. Acad. Sci. U.S.A.78: 402–404.

    Article  PubMed  Google Scholar 

  • Elasser, W. M. 1958. The physical foundation of biology. An analytical study. Pergamon Press, New York.

    Google Scholar 

  • Elliot, D. C. &A. W. Murray. 1975. Evidence against an involvement of cyclic nucleotides in the induction of betacyanin synthesis by cytokinins. Biochem. J.146: 333–337.

    Google Scholar 

  • Eschrich, W., J. Fromm &R. F. Evert 1988. Transmission of electric signals in sieve tubes of zucchini plants. Bot. Acta101: 327–331.

    Google Scholar 

  • Ewart, A. J. 1903. On the physics and physiology of protoplasmic streaming in plants. Clarendon Press, Oxford.

    Google Scholar 

  • Faraday, C. D. &R. M. Spanswick. 1993. Evidence for a membrane skeleton in higher plants. A spectrin-like polypeptide co-isolates with rice root plasma membranes. Fed. Eur. Biochem. Soc. Lett.318: 313–316.

    CAS  Google Scholar 

  • Felle, H., B. Brummer, A. Berti &R. W. Parish. 1986. Indole-3-acetic acid and fusicoccin cause cytosolic acidification of corn coleoptile cells. Proc. Natl. Acad. Sci. U.S.A.83: 8992–8995.

    Article  PubMed  CAS  Google Scholar 

  • Feynman, R. P. 1965. The character of physical law. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • —. 1985. QED. The strange theory of light and matter. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • —,R. B. Leighton &M. Sands. 1963. The Feynman lectures on physics. Volume I. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • Findlay, G. P. 1959. Studies of action potentials in the vacuole and cytoplasm ofNitella. Austral. J. Biol. Sci.12: 412–426.

    Google Scholar 

  • —. 1961. Voltage-clamp experiments withNitella. Nature191: 812–814.

    Article  Google Scholar 

  • —. 1962. Calcium ions and the action potential inNitella. Austral. J. Biol. Sci.15: 69–82.

    CAS  Google Scholar 

  • —. 1970. Membrane electrical behavior inNitellopsis obtusa. Austral. J. Biol. Sci.23: 1033–1045.

    CAS  Google Scholar 

  • — &A. B. Hope. 1964a. Ionic relations of cells ofChara australis. VII. The separate electrical characteristics of the plasmalemma and tonoplast. Austral. J. Biol. Sci.17: 62–77.

    CAS  Google Scholar 

  • &—. 1964b. Ionic relations of cells ofChara australis. IX. Analysis of transient membrane currents. Austral. J. Biol. Sci.17: 400–411.

    Google Scholar 

  • Fisher, R. A. 1930. The genetical theory of natural selection. Oxford University Press, Oxford.

    Google Scholar 

  • Fluck, R. A. &M. J. Jaffe. 1974. The distribution of cholinesterases in plant species. Phytochemistry13: 2475–2480.

    Article  CAS  Google Scholar 

  • Forsberg, C. 1965. Nutritional studies ofChara in axenic cultures. Physiol. Pl.18: 275–290.

    Article  Google Scholar 

  • Fricke, H. 1925. The electric capacity of suspensions with special reference to blood. J. Gen. Physiol.9: 137–152.

    Article  CAS  PubMed  Google Scholar 

  • — &S. Morse. 1925. The electric resistance and capacity of blood for frequencies between 800 and 41/2 million cycles. J. Gen. Physiol.9: 153–167.

    Article  CAS  PubMed  Google Scholar 

  • Fromm, J. 1991. Control of phloem unloading by action potentials inMimosa. Physiol. Pl.83: 529–533.

    Article  Google Scholar 

  • Fulghum, R. 1989. All I really need to know I learned in kindergarten. Villard Books, New York.

    Google Scholar 

  • Gaffey, C. T. &L. J. Mullins. 1958. Ion fluxes during the action potential inChara. J. Physiol.144: 505–524.

    PubMed  CAS  Google Scholar 

  • Galston, A. W. 1994. Life processes of plants. Scientific American Library, New York.

    Google Scholar 

  • Gertel, E. T. &P. B. Green. 1977. Cell growth pattern and wall microfibrillar arrangement. Experiments withNitella. Pl. Physiol.60: 247–254.

    CAS  Google Scholar 

  • Gibbs, J. W. 1928. The collected works of J. Willard Gibbs. Vol. I. Longmans, Green and Co., New York.

    Google Scholar 

  • Gillet, C., P. Cambier &F. Liners. 1992. Release of small polyuronides fromNitella cell wall. Pl. Physiol.100: 846–852.

    CAS  Google Scholar 

  • —,P. Van Cutsem &M. Voué. 1989. Correlation between the weight loss induced by alkaline ions and the cationic exchange capacity of thenitella cell wall. J. Exp. Bot.40: 129–133.

    Article  CAS  Google Scholar 

  • —,M. Voué &P. Cambier. 1994. Conformational transitions and modifications in ionic exchange properties induced by alkaline ions in theNitella flexilis cell wall. Pl. Cell Physiol.35: 79–85.

    CAS  Google Scholar 

  • Gillispie, C. C. 1970. Dictionary of scientific biography. Vol. II. Charles Scribner’ s Sons, New York.

    Google Scholar 

  • —. 1972. Dictionary of scientific biography. Vol. VI. Charles Scribner’s Sons, New York.

    Google Scholar 

  • Goebel, K. 1920. Die Entfaltungsbewegungen der Pflanzen und deren teleologische Deutung. Gustav Fischer, Jena.

    Google Scholar 

  • Goldman, D. E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol.27: 37–60.

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith, G. W. &A. L. Hafenrichter. 1932. Anthokinetics. The physiology and ecology of floral movements. Carnegie Institute, Washington.

    Google Scholar 

  • Göppert, H. R. &F. Cohn. 1849. Über die Rotation des Zellinhaltes vonNitella flexilis. Bot. Z.7: 665–673 ff.

    Google Scholar 

  • Graham, L. E. 1993. Origin of land plants. John Wiley & Sons, New York.

    Google Scholar 

  • — &Y. Kaneko. 1991. Subcellular structures of relevance to the origin of land plants (Embryophytes) from green algae. Crit. Rev. Pl. Sci.10: 323–342.

    Google Scholar 

  • Grambast, L. J. 1974. Phylogeny of the Charophyta. Taxon23: 463–481.

    Article  Google Scholar 

  • Green, P. B. 1954. The sPlral growth pattern of the cell wall inNitella axillaris. Amer. J. Bot.41: 403–409.

    Article  Google Scholar 

  • —. 1958a. Concerning the site of the addition of new wall substances to the elongatingNitella cell wall. Amer. J. Bot.45: 111–116.

    Article  Google Scholar 

  • —. 1958b. Structural characteristics of develoPlngNitella internodal cell walls. J. Biophys. Biochem. Cytol.1: 505–516.

    Google Scholar 

  • —. 1959. Wall structure and helical growth inNitella. Biochim. Biophys. Acta36: 536–538.

    Article  PubMed  CAS  Google Scholar 

  • —. 1960. Multinet growth in the cell wall ofNitella. J. Biophys. Biochem. Cytol.7: 289–296.

    PubMed  CAS  Google Scholar 

  • —. 1962. Mechanism for plant cellular morphogenesis. Science138: 1404–1405.

    Article  PubMed  Google Scholar 

  • —. 1963. On mechanisms of elongation. Pages 203–234in Cytodifferential & macromolecular synthesis. Academic Press, New York.

    Google Scholar 

  • —. 1964. Cinematic observations on the growth and division of chloroplasts inNitella. Amer. J. Bot.51: 334–342.

    Article  Google Scholar 

  • —. 1968. Growth physics inNitella: A method for continuousin vivo analysis of extensibility based on a micromanometer technique for turgor pressure. Pl. Physiol.43: 1169–1184.

    Google Scholar 

  • —. 1981. Organogenesis—A biophysical view. Annual Rev. Pl. Physiol.31: 51–82.

    Article  Google Scholar 

  • — &G. B. Chapman. 1955. On the development and structure of the cell wall inNitella. Amer. J. Bot.42: 685–693.

    Article  Google Scholar 

  • — &J. C. W. Chen. 1960. Concerning the role of wall stresses in the elongation of theNitella cell. Z. Wiss. Mikroskop.64: 482–488.

    CAS  Google Scholar 

  • —,R. O. Erickson &J. Buggy. 1971. Metabolic and physical control of cell elongation rate. Pl. Physiol.47: 423–430.

    CAS  Google Scholar 

  • Green, R. M. 1953. A translation of Luigi Galvani’sDe Viribus Electricitatis In Motu Musculari Commentarius. Commentary on the effect of electricity on muscular motion. Elizabeth Licht, Cambridge, Massachusetts.

    Google Scholar 

  • Groves, J. &G. R. Bullock-Webster. 1920. The British Charophyta. Volume I. Nitelleae. Ray Society, London.

    Google Scholar 

  • . 1924. The British Charophyta. Volume II. Characeae. Ray Society, London.

    Google Scholar 

  • Haberlandt, G. 1890. Das Reizleitende Gewebesystem der Sinnpflanze. Engelmann, Leipzig.

    Google Scholar 

  • —. 1901. Sinneorgane im Pflanzenreich. Engelmann, Leipzig.

    Google Scholar 

  • Haidane, J. B. S. 1924. A mathematical theory of natural and artificial selection. Part II. The influence of partial self-fertilization, inbreeding, assortative mating, and selective fertilization on the composition of Mendelian populations, and on natural selection. Proc. Cambridge Philos. Soc.1: 158–163.

    Article  Google Scholar 

  • Halliday, D. &R. Resnick. 1970. Fundamentals of physics. John Wiley & Sons, New York.

    Google Scholar 

  • Hamill, O. P., J. R. Huguenard &D. A. Price. 1991. Patch-clamp studies of voltage-gated currents in identified neurons of the rat cerebral cortex. Cerebral Cortex1: 48–61.

    Article  PubMed  CAS  Google Scholar 

  • —,A. Marty, E. Neher, B. Sakmann &F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch.391: 85–100.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, U.-P. 1990. Implications of control theory for homeostasis and phosphorylation of transport molecules. Bot. Acta103: 15–23.

    CAS  Google Scholar 

  • Harvey, E. N. 1942a. Stimulation of cells by intense flashes of ultraviolet light. J. Gen. Physiol.25: 431–443.

    Article  PubMed  Google Scholar 

  • . 1942b. Hydrostatic pressure and temperature in relation to stimulation and cyclosis inNitella flexilis. J. Gen. Physiol.25: 855–863.

    Article  PubMed  Google Scholar 

  • —. 1957. A history of luminescence. From the earliest times until 1900. American Philosophical Society, Philadelphia, Pennsylvania.

    Google Scholar 

  • Hayama, T., T. Shimmen &M. Tazawa. 1979. Participation of Ca2+ in cessation of cytoplasmic streaming induced by membrane excitation in characean internodal cells. Protoplasma99: 305–321.

    Article  Google Scholar 

  • Hedrich, R. &J. I. Schroeder. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annual Rev. Pl. Physiol. Pl. Molec. Biol.40: 539–569.

    Article  Google Scholar 

  • Hejnowicz, Z., B. Buchen &A. Sievers. 1985. The endogenous difference in the rates of acropetal and basipetal cytoplasmic streaming inChara rhizoids is enhanced by gravity. Protoplasma125: 219–230.

    Article  Google Scholar 

  • Hildebrand, J. H. 1963. An introduction to molecular kinetic theory. Chapman & Hall, London.

    Google Scholar 

  • Hill, S. E. 1935. Stimulation by cold inNitella. J. Gen. Physiol.18: 357–367.

    Article  CAS  PubMed  Google Scholar 

  • —. 1941. The relation of streaming and action potentials inNitella. Biol. Bull.81: 296.

    Google Scholar 

  • Hille, B. 1984. Ionic channels of excitable membranes. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • —. 1992. Ionic channels of excitable membranes. Ed. 2. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Hirono, C. &T. Mitsui. 1983. Slow onset of activation and delay of inactivation in transient current ofNitella axilliformis. Pl. Cell Physiol.24: 289–299.

    CAS  Google Scholar 

  • Hoagland, D. R. &T. C. Broyer. 1942. Accumulation of salt and permeability in plant cells. J. Gen. Physiol.25: 865–880.

    Article  CAS  PubMed  Google Scholar 

  • — &A. R. Davis. 1923a. The composition of the cell sap of the plant in relation to the absorption of ions. J. Gen. Physiol.5: 629–641.

    Article  CAS  PubMed  Google Scholar 

  • . 1923b. Further experiments on the absorption of ions by plants, including observations on the effect of light. J. Gen. Physiol.6: 47–62.

    Article  CAS  PubMed  Google Scholar 

  • —,P. L. Hibbard &A. R. Davis. 1926. The influence of light, temperature, and other conditions on the ability ofNitella cells to concentrate halogens in the cell sap. J. Gen. Physiol.10: 121–146.

    Article  CAS  PubMed  Google Scholar 

  • Hodge, A. J., J. D. McLean, &F. V. Mercer. 1956. A possible mechanism for the morphogenesis of lamellar systems in plant cells. J. Biophys. Biochem. Cytol.2: 597–607.

    PubMed  CAS  Google Scholar 

  • Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26: 339–409.

    Article  CAS  Google Scholar 

  • —. 1964. The conduction of the nervous impulse. Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • — &A. F. Huxley. 1953. Movement of radioactive potassium and membrane current in a giant axon. J. Physiol.121: 403–414.

    PubMed  CAS  Google Scholar 

  • —,—, &B. Katz. 1952. Measurement of current-voltage relations in the membrane of the giant axon ofLoligo. J. Physiol.116: 424–448.

    PubMed  CAS  Google Scholar 

  • — &B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol.108: 37–77.

    Google Scholar 

  • — &R. D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol.128: 61–88.

    PubMed  CAS  Google Scholar 

  • Hodick, D. &A. Sievers. 1986. The influence of Ca2+ on the action potential in mesophyll cells ofDionaea muscipula Ellis. Protoplasma133: 83–84.

    Article  Google Scholar 

  • &—. 1989. On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis). Planta179: 32–42.

    Article  Google Scholar 

  • Hogg, J., E. J. Williams &R. J. Johnson. 1968a. A simplified method for measuring membrane resistances inNitella translucens. Biochim. Biophys. Acta150: 518–520.

    Article  PubMed  CAS  Google Scholar 

  • —,—&—. 1968b. The temperature dependence of the membrane potential and resistance inNitella translucens. Biochim. Biophys. Acta150: 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Homblé, F. &I. Foissner. 1993. Electron microscopy and electrophysiology of local cell wall formation inChara corallina. Pl. Cell Physiol.34: 1283–1289.

    Google Scholar 

  • —,C. Richter &J. Dainty. 1989. Leakage of pectins from the cell wall ofChara corallina in the absence of divalent cations. Pl. Physiol. Biochem.27: 465–468.

    Google Scholar 

  • Hope, A. B. 1951. Membrane potential differences in bean roots. Austral. J. Sci. Res., Ser. B.4: 265–274.

    CAS  Google Scholar 

  • —. 1961a. Ionic relations of cells ofChara corallina. V. The action potential. Austral. J. Biol. Sci.14: 312–322.

    CAS  Google Scholar 

  • —. 1961b. The action potential in cells ofChara. Nature191: 811–812.

    Article  Google Scholar 

  • — &G. P. Findlay. 1964. The action potential inChara. Pl. Cell Physiol.5: 377–379.

    CAS  Google Scholar 

  • — &R. N. Robertson. 1956. Initial absorption of ions by plant tissue. Nature177: 43–44.

    Article  CAS  Google Scholar 

  • —,A. Simpson &N. A. Walker. 1966. The efflux of chloride from cells ofNitella andChara. Austral. J. Biol. Sci.19: 355–362.

    CAS  Google Scholar 

  • — &P. G. Stevens. 1952. Electric potential differences in bean roots and their relation to salt uptake. Austral. J. Sci. Res., Ser. B5: 335–343.

    CAS  Google Scholar 

  • — &N. A. Walker. 1961. Ionic relations of cells ofChara australis R. Br. IV. Membrane potential differences and resistances. Austral. J. Biol. Sci.14: 26–44.

    CAS  Google Scholar 

  • &—. 1975. The physiology of giant algal cells. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hörmann, G. 1898. Studien über die Protoplasmaströmung bei den Characeen. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Horowitz, K. A., D. C. Lewis &E. L. Gasteiger. 1975. ◊ant “primary perception”: Electrophysiological unresponsiveness to brine shrimp killing. Science189: 478–480.

    Article  PubMed  Google Scholar 

  • Horowitz, P. &W. Hill. 1989. The art of electronics. Ed. 2. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hotchkiss, A. T. &R. M. Brown Jr. 1987. The association of rosette and globule terminal complexes with cellulose microfibril assembly inNitella translucens var.axillaris (Charophyceae). J. Phycol.23: 229–237.

    Article  Google Scholar 

  • Huxley, T. H. 1902. Science and education. American Dome Library Co., New York.

    Google Scholar 

  • Iijima, T. &S. Hagiwara. 1987. Voltage-dependent K channels in protoplasts of trap-lobe cells ofDionaea muscipula. J. Membr. Biol.100: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • — &T. Sibaoka. 1981. Action potential in the trap-lobes ofAldovanda vesiculosa. Pl. Cell Physiol.22: 1595–1601.

    Google Scholar 

  • &—. 1982. Propagation of action potential over the trap-lobesof Aldovanda vesiculosa. Pl Cell Physiol.23: 679–688.

    Google Scholar 

  • &—. 1983. Movements of K+ during shutting and opening of the trap-lobes ofAldovanda vesiculosa. Pl. Cell Physiol.24: 51–60.

    CAS  Google Scholar 

  • &—. 1985. Membrane potentials in excitable cells ofAldovanda vesiculosa trap-lobes. Pl. Cell Physiol.26: 1–13.

    CAS  Google Scholar 

  • Imahori, K. 1954. Ecology phytogeography and taxonomy of the Japanese Charophyta. Kanazawa University Press, Kanazawa, Japan.

    Google Scholar 

  • Jacobson, S. L. 1965. Receptor response in Venus’ fly-trap. J. Gen. Physiol.49: 117–129.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe, M. J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta114: 143–157.

    Article  Google Scholar 

  • —. 1976. Thigmomorphogenesis: A detailed characterization of the response of beans (Phaseolus vulgaris L.) to mechanical stimulation. Z. Pflanzenphysiol.77: 437–453.

    Google Scholar 

  • — &A. W. Galston. 1968. The physiology of tendrils. Annual Rev. Pl. Physiol.19: 417–434.

    Article  Google Scholar 

  • Jean, J. M., C. K. Chan, G. R. Fleming &T. G. Owens. 1989. Excitation transport and trapping on the spectrally disordered lattices. Biophys. J.56: 1203–1216.

    CAS  PubMed  Google Scholar 

  • Joule, J. P. 1852. On the heat disengaged in chemical combinations. Phil. Mag. Fourth Ser. No. 21. Suppl. Vol.3: 481–504.

    Google Scholar 

  • Junge, D. 1981. Nerve and muscle excitation. Ed. 2. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Kamitsubo, E. &M. Kikuyama. 1992. Immobilization of endoplasm flowing contiguous to the actin cables upon electrical stimulus inNitella internodes. Protoplasma168: 82–86.

    Article  Google Scholar 

  • —,Y. Ohashi &M. Kikuyama. 1989. Coplasmic streaming in internodal cellsof Nitella under centrifugal acceleration: a study done with a newly constructed centrifuge microscope. Protoplasma152: 148–155.

    Article  Google Scholar 

  • Kamiya, N. 1959. Protoplasmic streaming. Protoplasmatologia. Handbuch der Protoplasmaforschung. Band VIII. Physiologie des Protoplasmas. 3. Motilität. Springer-Verlag, Wein.

    Google Scholar 

  • —. 1981. Physical and chemical basis of cytoplasmic streaming. Annual Rev. Pl. Physiol.32: 205–236.

    Article  CAS  Google Scholar 

  • — &K. Kuroda. 1956a. Artificial modification of the osmotic pressure of the plant cell. Protoplasma46: 423–436.

    Article  Google Scholar 

  • &—. 1956b. Velocity distribution of the protoplasmic streaming inNitella cells. Bot. Mag. (Tokyo)69: 544–554.

    Google Scholar 

  • — &M. Tazawa. 1956. Studies on water permeability of a single plant cell by means of transcellular osmosis. Protoplasma46: 394–422.

    Article  Google Scholar 

  • Katchalsky, A. &P. F. Curran. 1965. Nonequilibrium thermodynamics in biophysics. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Katsuhara, M., T. Mimura &M. Tazawa. 1989. Patch-clamp study on a Ca2+-regulated K+ channel in the tonoplast of the brackish characeaeLamprothamnium succinctum. Pl. Cell Physiol.30: 549–555.

    Google Scholar 

  • —,—&—. 1990. ATP-regulated ion channels in the plasmamembrane of a characean alga,Nitellopsis obtusa. Pl Physiol.93: 343–346.

    CAS  Google Scholar 

  • — &M. Tazawa. 1992. Calcium-regulated channels and their bearing on physiologicalactivities in characean cells. Philos. Trans., Ser. B338: 19–29.

    Article  CAS  Google Scholar 

  • Katz, B. 1966. Nerve, muscle and synapse. McGraw-Hill, New York.

    Google Scholar 

  • Kelvin, Lord (William Thomson). 1855. On the theory of the electric telegraph. Proc. Roy. Soc. London7: 382–399.

    Google Scholar 

  • Kersey, Y. M., P. K. Hepler, B. A. Palevitz &N. K. Wessells. 1976. Polarity of actin filaments in Characean algae. Proc. Natl. Acad. Sci. U.S.A.).73: 165–167.

    Article  CAS  Google Scholar 

  • Keynes, R. D. 1951. The ionic movements during nervous activity. J. Physiol.114: 119–150.

    PubMed  CAS  Google Scholar 

  • Kikuyama, M. 1986. Tonoplast action potential of Characeae. Pl Cell Physiol.27: 1461–1468.

    CAS  Google Scholar 

  • —. 1988. Ca2+ increases the Cl efflux of thepermeabilizedChara. Pl Cell Physiol.29: 105–108.

    CAS  Google Scholar 

  • —. 1989. Effect of Ca2+ on tonoplast potential of permeabilized Characeae cells. Pl Cell Physiol.30: 253–258.

    Google Scholar 

  • —,M. Oda, T. Shimmen, T. Hayama &M. Tazawa. 1984. Potassium and chloride effluxes during excitation of characean cells. Pl Cell Physiol.25: 965–974.

    CAS  Google Scholar 

  • —,K. Shimada &Y. Hiramoto. 1993. Cessation of cytoplasmic streaming follows an increase of cytoplasmic Ca2+ during action potential inNitella. Protoplasma174: 142–146.

    Article  Google Scholar 

  • — &M. Tazawa. 1976. Tonoplast action potential inNitella in relation to vacuolar chloride concentration. J. Membr. Biol.29: 95–110.

    Article  PubMed  CAS  Google Scholar 

  • &—. 1983. Transient increase of intracellular Ca2+ during excitation of tonoplast-freeChara cells. Protoplasma117: 62–67.

    Article  CAS  Google Scholar 

  • Kishimoto, U. 1957. Studies on the electrical properties of a singleplant cell. Internodal cell ofNitella flexilis. J. Gen. Physiol.42: 1167–1187.

    Article  Google Scholar 

  • . 1959. Electrical characteristics ofChara corallina. Rep. (Annual) Sci. Works Fac. Sci. Osaka Univ.7: 115–146.

    Google Scholar 

  • . 1964. Current voltage relations inNitella. Jap. J. Physiol.14: 515–527.

    CAS  Google Scholar 

  • . 1968. Response ofChara internodes to mechanical stimulation. Rep. Biol. Works16: 61–66.

    Google Scholar 

  • . 1972. Characteristics of the excitableChara membrane. Advances Biophys.3: 199–226.

    CAS  Google Scholar 

  • &H. Akabori. 1959. Protoplasmic streaming of an internodal cell ofNitella flexilis. Its correlation with electric stimulus. J. Gen. Physiol.42: 1167–1183.

    Article  PubMed  CAS  Google Scholar 

  • &T. Ohkawa. 1966. Shortening ofNitella internode during excitation. Pl Cell Physiol.7: 493–497.

    Google Scholar 

  • ,Y. Takeuchi, T. Ohkawa &N. Kami-iki. 1985. A kinetic analysis of the electrogenic pump ofChara corallina: III. Pump activity during action potential. J. Membr. Biol.86: 27–36.

    Article  CAS  Google Scholar 

  • Kiss, J. Z. &L. A. Staehelin. 1993. Structural polarity in theChara rhizoid: A reevaluation. Amer. J. Bot.80: 273–282.

    Article  CAS  Google Scholar 

  • Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella. J. Gen. Physiol.52: 60–87.

    Article  PubMed  CAS  Google Scholar 

  • Kiyosawa, K. 1993. Loss of osmotic and ionic regulation inChara internodal cells in concentrated KC1 solutions. Physiol. Pl89: 499–503.

    Article  CAS  Google Scholar 

  • Klieber, H.-G. &D. Gradmann. 1993. Enzyme kinetics of the prime K+ channel in the tonoplast ofChara: Selectivity and inhibition. J. Membr. Biol.132: 253–265.

    PubMed  CAS  Google Scholar 

  • Klotz, I. M. 1967. Energy changes in biochemical reactions. Academic Press, New York.

    Google Scholar 

  • Kobatake, Y., I. Inoue &T. Ueda. 1975. Physical chemistry of excitable membranes. Advances Biophys.7: 43–89.

    CAS  Google Scholar 

  • Kohl, F. G. 1894. Die Mechanik der Reizkrümmungen. N. G. Elwert’sche, Marburg.

    Google Scholar 

  • Kripalani, K. 1962. Rabindranath Tagore. A biography. Grove Press, New York.

    Google Scholar 

  • Kudoyarova, G. R., I. Yu. Usmanov, V. Z. Gyuli-Zade, É. G. Fattakhutdinov &S. Yu. Veselov. 1990. Interaction of spatially separated plantorgans. Relationship between electric and hormonal signals. Dokl. Bot. Sci.310: 13–15.

    Google Scholar 

  • Kwiatkowska, M. 1988. Symplastic isolation ofChara vulgaris antheridium and mechanisms regulating the process of spermatogenesis. Protoplasma142: 137–146.

    Article  Google Scholar 

  • —. 1991. Autoradiographic studies on the role of plasmodesmata in the transport of gibberellin. Planta183: 294–299.

    Article  CAS  Google Scholar 

  • — &J. Maszewski. 1985. Changes in ultrastructure of plasmodesmata during spermatogenesis inChara vulgaris. Planta166: 46–50.

    Article  Google Scholar 

  • &—. 1986. Changes in the occurrence and ultrastructure of plasmodesmata in antheridia ofChara vulgaris during different stages of spermatogenesis. Protoplasma132: 179–188.

    Article  Google Scholar 

  • —,K. Po◊onska &K. Zylinska. 1990. Biological role of endoreplication in the process of spermatogenesis inChara vulgaris L. Protoplasma155: 176–187.

    Article  Google Scholar 

  • Lakshminarayanaiah, N. 1969. Transport phenomena in membranes. Academic Press, New York.

    Google Scholar 

  • Laver, D. R. 1992. Divalent cation block and competition between divalent and monovalent cations in the large-conductance K+ channel fromChara australis. J. Gen. Physiol.100: 269–300.

    Article  PubMed  CAS  Google Scholar 

  • — &N. A. Walker. 1991. Activation by Ca2+ and block by divalent cations of the K+ channel in the membrane of cytoplasmic drops fromChara australis. J. Membr. Biol.120: 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Levy, S. 1991. Two separate zones of helicoidally oriented microfibrils are present in the walls ofNitella internodes during growth. Protoplasma163: 145–155.

    Article  Google Scholar 

  • Lewis, G. N. &M. Randall. 1923. Thermodynamics and the free energy of chemical substances. McGraw-Hill, New York.

    Google Scholar 

  • Linderholm, H. 1952. Active transport of ions through frog skin with special reference to the action of certain diuretics. A study of the relation between certain delectrical properties, the flux of labeled ions, and respiration. Acta Physiol. Scand.27 [Suppl97]: 1–144.

    CAS  Google Scholar 

  • Ling, G. N. 1984. In search of the physical basis of life. Plenum, New York.

    Google Scholar 

  • Liu, Q., K. Katou &H. Okamoto. 1991. Effects of osmotic stress, ionic stress and IAA on the cell-membrane resistance ofVigna hypocotyls. Pl. Cell Physiol.32: 1021–1029.

    CAS  Google Scholar 

  • Lloyd, F. E. 1924. The fluorescent colors of plants. Science59: 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, J. 1912. The mechanistic conception of life. Chicago University Press, Chicago.

    Google Scholar 

  • —. 1916. The organism as a whole from a physiochemical viewpoint. G. P. Putnam’s Sons, New York.

    Google Scholar 

  • Lotka, A. J. 1925. Elements of physical biology. Williams & Wilkins Co., Baltimore, Maryland.

    Google Scholar 

  • Luby-Phelps, K., D. L. Taylor &F. Lanni. 1986. Probing the structure of cytoplasm. J. Cell Biol.102: 2015–2022.

    Article  PubMed  CAS  Google Scholar 

  • Lucas, W. J. 1975. Photosynthetic fixation of14carbon by internodal cells ofChara corallina. J. Exp. Bot.26: 331–336.

    Article  CAS  Google Scholar 

  • —. 1976. The influence of Ca2+ and K+ on H14CO3 influx in internodal cellsof Chara corallina. J. Exp. Bot.27: 32–42.

    Article  CAS  Google Scholar 

  • —. 1977. Analogue inhibition of the active HCO3 transport site in the characean plasma membrane. J. Exp. Bot.28: 1321–1336.

    Article  CAS  Google Scholar 

  • —. 1979. Alkaline band formation inChara corallina. Due to OH efflux or H+ influx? Pl. Physiol.63: 248–254.

    CAS  Google Scholar 

  • —. 1982. Mechanism of acquisition of exogenous bicarbonate by internodal cells ofChara corallina. Planta156: 181–192.

    Article  CAS  Google Scholar 

  • — &J. M. Alexander. 1981. Influence of turgor pressure manipulation on plasmalemma transport of HCO3 and OH inChara corallina. Pl. Physiol.68: 553–559.

    CAS  Google Scholar 

  • —,F. Brechignac, T. Mimura &J. Oross. 1989. Charasomes are not essential for photosynthetic utilization of exogenous HCO3 inChara corallina. Protoplasma151: 106–114.

    Article  Google Scholar 

  • — &J. Dainty. 1977a. HCO3 influx across the plasmalemma ofChara corallina. Divalent cation requirement. Pl. Physiol.60: 862–867.

    CAS  Google Scholar 

  • &—. 1977b. Spatial distribution of functional OH carriers along a characean internodal cell: Determined by the effect of cytochalasin B on H14CO3. J. Membr. Biol32: 75–92.

    Article  PubMed  CAS  Google Scholar 

  • — &T. Shimmen. 1981. Intracellular perfusion and cell centrifugation studies on plasmalemma transport processes inChara corallina. J. Membr. Biol.58: 227–237.

    Article  CAS  Google Scholar 

  • — &F. A. Smith. 1973. The formation of alkaline and acid regions at the cell surface ofChara corallina cells. J. Exp. Bot.24: 1–14

    Article  CAS  Google Scholar 

  • —,R. M. Spanswick &J. Dainty. 1978. HCO3 influx across the plasmalemma ofChara corallina. Pl Physiol.61: 487–493.

    CAS  Google Scholar 

  • Lund, E. J. 1947. Bioelectric fields and growth. University of Texas Press, Austin.

    Google Scholar 

  • Lunevsky, V. Z., O. M. Zherelova, I. Y. Vostrikov &G. N. Berestovsky. 1983. Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J. Membr. Biol.72: 43–58.

    Article  Google Scholar 

  • Mackie, G. O., I. D. Lawn &M. Pavans de Ceccatty. 1983. Studies on hexactinellid sponges. II. Excitability, conduction and coordination of responses inRhabdocalyptus Dawsini (Lambe, 1873). Philos. Trans., Ser. B301: 401–418.

    Article  Google Scholar 

  • MacRobbie, E. A. C. 1962. Ionic relations ofNitella translucens. J. Gen. Physiol.45: 861–878.

    Article  CAS  PubMed  Google Scholar 

  • — &J. Dainty. 1958. Ion transport inNitellopsis obtusa. J. Gen. Physiol.42: 35–353.

    Article  Google Scholar 

  • — &D. S. Fensom. 1969. Measurements of electro-osmosis inNitella translucens. J. Exp. Bot.20: 466–484.

    Article  CAS  Google Scholar 

  • Mailman, D. S. &L. J. Mullins. 1966. The electrical measurement of chloride fluxes inNitella. Austral. J. Biol. Sci.19: 385–398.

    CAS  Google Scholar 

  • Malone, M. 1993. Hydraulic signals. Philos. Trans., Ser. B341: 33–39.

    Article  Google Scholar 

  • Manhart, J. R. &J. D. Palmer. 1990. The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature345: 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Mast, S. O. 1924. Structure and locomotion inAmoeba proteus. Anat. Rec.29: 88.

    Google Scholar 

  • —. 1926. Structure, movement, locomotion, and stimulation inAmoeba. J. Morphol.41: 347–425.

    Article  Google Scholar 

  • Maszewski, J. &P. Kolodziejczyk. 1991. Cell cycle duration in antheridial filaments ofChara spp. (Characeae) with different genome size and heterochromatin content. Pl. Syst. Evol.175: 23–38.

    Article  Google Scholar 

  • Matthews, G. G. 1986. Cellular physiology of nerve and muscle. Blackwell Scientific Publications, Palo Alto, California.

    Google Scholar 

  • McClendon, J. F. 1927. The permeability and the thickness of the plasma membrane as determined by electric currents of high and low frequency. Protoplasma3: 71–81.

    Article  CAS  Google Scholar 

  • McConnaughey, T. 1991. Calcification inChara corallina CO2 hydroxylation generates protons for bicarbonate assimilation. Limnol. & Oceanogr.36: 619–628.

    CAS  Google Scholar 

  • — &R. H. Falk. 1991. Calcium-proton exchange during algal calcification. Biol. Bull.180: 185–195.

    Article  Google Scholar 

  • McCurdy, D. W. &A. C. Harmon. 1992. Calcium-dependent protein kinase in the green algaChara. Planta188: 54–61.

    Article  CAS  Google Scholar 

  • Mehra, J. 1994. The beat of a different drum. The life and science of Richard Feynman. Clarendon Press, Oxford.

    Google Scholar 

  • Mercer, E. H. 1981. The foundations of biological theory. John Wiley & Sons, New York.

    Google Scholar 

  • Métraux, J.-P. 1982. Changes in cell-wall polysaccharide composition of develoPlngNitella internodes. Planta155: 459–466.

    Article  Google Scholar 

  • —,P. A. Richmond &L. Taiz. 1980. Control of cell elongation inNitella by endogenous cell wall pH gradients. Pl. Physiol.65: 204–210.

    Google Scholar 

  • — &L. Taiz. 1977. Cell wall extension inNitella as influenced by acids and ions. Proc. Natl. Acad. Sci. U.S.A.74: 1565–1569.

    Article  PubMed  Google Scholar 

  • ——. 1978. Transverse viscoelastic extension inNitella. I. Relationship to growth rate. Pl. Physiol.61: 131–135.

    Google Scholar 

  • ——. 1979. Transverse viscoelastic extension inNitella. II. Effects of acid and ions. Pl. Physiol.63: 657–659.

    Google Scholar 

  • Michaelis, L. 1925. Contribution to the theory of permeability of membranes for electrolytes. J. Gen. Physiol.8: 33–59.

    Article  CAS  PubMed  Google Scholar 

  • Miller, A. J. &D. Sanders. 1987. Depletion of cytosolic free calcium induced by photosynthesis. Nature326: 397–400.

    Article  CAS  Google Scholar 

  • Mimura, T. &Y. Kirino. 1984. Changes in cytoplasmic pH measured by31P-NMR in cells ofNitellopsis obtusa. Pl. Cell Physiol.25: 813–820.

    CAS  Google Scholar 

  • — &M. Tazawa. 1983. Effect of intracellular Ca2+ on membrane potential and membrane resistance in tonoplast-free cells ofNitellopsis obtusa. Protoplasma118: 49–55.

    Article  CAS  Google Scholar 

  • Moestrup, O. 1970. The fine structure of mature spermatozoids ofChara corallina, with special reference to microtubules and scales. Planta93: 295–308.

    Article  Google Scholar 

  • Morrison, J. C., L. C. Greve &P. A. Richmond. 1993. Cell wall synthesis during growth and maturation ofNitella internodal cells. Planta189: 321–328.

    Article  CAS  Google Scholar 

  • Mullins, L. J. 1939. The effect of radiation from radioactive indicator on the penetration of ions intoNitella. J. Cell. Comp. Physiol.14: 493–495.

    Article  Google Scholar 

  • —. 1962. Efflux of chloride ions during action potential ofNitella. Nature196: 986–987.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, R. &T. Hayama. 1979. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming inChara internodal cells. J. Cell Sci.36: 121–136.

    PubMed  CAS  Google Scholar 

  • — &U. Kishimoto. 1964. Cell wall potential inNitella. Pl. Cell Physiol.5: 21–31.

    Google Scholar 

  • — &L. I. Rebhun. 1966. Cytoplasmic microfilaments in streamingNitella cells. J. Ultrastruct. Res.14: 571–589.

    Article  PubMed  CAS  Google Scholar 

  • — &M. Tazawa. 1962. Changes in resting potential and ion absorption induced by light in a single plant cell. Pl. Cell Physiol.3: 323–339.

    Google Scholar 

  • Narahashi, T., J. W. Moore &W. R. Scott. 1964. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons. J. Gen. Physiol.47: 965–974.

    Article  PubMed  CAS  Google Scholar 

  • Nemec, B. 1901. Die Reitzleitung und die reizleitenden Strukturen bei den Pflanzen. Gustav Fischer, Jena.

    Google Scholar 

  • Nernst, W. 1888. Zur Kinetik der in Lösung befindlichen Körper. I. Theorie der Diffusion. Zeitschrift für physikalische Chemie2: 613–637.

    Google Scholar 

  • —. 1889. Die elektromotorische Wirksamkeit der Ionen. Zeitschrift für physikalische Chemie4: 129–181.

    Google Scholar 

  • Niklas, K. J. 1992. Plant biomechanics. An engineering approach to plant form and function. Chicago University Press, Chicago.

    Google Scholar 

  • Nobel, P. S. 1991. Physicochemical and environmental plant physiology. Academic Press, San Diego, California.

    Google Scholar 

  • Nothnagel, E. A. &W. W. Webb. 1979. Barrier filter for fluorescence microscopy of strongly autofluorescent plant tissues—Application to actin cables inChara. J. Histochem. Cytochem.27: 1000–1002.

    Google Scholar 

  • —,J. W. Sanger &W. W. Webb. 1982. Effects of exogenous proteins on cytoplasmic streaming in perfusedChara cells. J. Cell Biol.93: 735–742.

    Article  PubMed  CAS  Google Scholar 

  • Nuccitelli, R. (ed.). 1986. Ionic currents and development. Alan R. Liss, New York.

    Google Scholar 

  • Ockam, Guillermus. 1487. Quotlibeta Septum. Impressa Parisii Magistri Petri Rubei. Brunet4: 154.

    Google Scholar 

  • Oda, K. 1962. Polarized and depolarized states of the membrane inChara Braunii, with special reference to the transition between the two states. Sci. Rep. Tohoku Imp. Univ., Ser. 4, Biol.28: 1–16.

    Google Scholar 

  • —. 1976. Simultaneous recording of potassium and chloride effluxes during an action potential inChara corallina. Pl. Cell Physiol.17: 1085–1088.

    CAS  Google Scholar 

  • Ogata, K. 1983. The water-film electrode: A new device for measuring the Characean electro-potential and -conductance distributions along the length of the internode. Pl. Cell Physiol.24: 695–703.

    CAS  Google Scholar 

  • — &U. Kishimoto. 1976. Rhythmic change of membrane potential and cyclosis ofNitella internode. Pl. Cell Physiol.17: 201–207.

    Google Scholar 

  • Ohkawa, T. &U. Kishimoto. 1977. Breakdown phenomena in theChara membrane. Pl. Cell Physiol.18: 67–80.

    CAS  Google Scholar 

  • — &I. Tsutsui. 1988. Electrical tolerance (breakdown) of theChara corallina plasmalemma. I. Necessity of calcium. J. Membr. Biol.103: 273–282.

    Article  CAS  Google Scholar 

  • Okazaki, Y. &M. Tazawa. 1990. Calcium ion and turgor regulation in plant cells. J. Membr. Biol.114: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • —,Y. Yoshimoto, Y. Hiramoto &M. Tazawa. 1987. Turgor regulation and cytoplasmic free Ca2+ in the algaLamprothamnium. Proto◊asma140: 67–71.

    Article  Google Scholar 

  • Okihara, K., T. Ohkawa &M. Kasai. 1993. Effects of calmodulin in Ca2+-dependent Cl-sensitive anion channels in theChara plasmalemma: A patch clamp study. Pl. Cell Physiol.34: 75–82.

    CAS  Google Scholar 

  • —,—,I. Tsutsui &M. Kasai. 1991. A Ca2+- and voltage-dependent Cl-sensitive anion channel in theChara plasmalemma: A patch-clamp study. Pl. Cell Physiol.32: 593–601.

    Google Scholar 

  • Onsager, L. 1931a. Reciprocal relations in irreversible processes. I. Physical Review37: 405–426.

    Article  CAS  Google Scholar 

  • —. 1931b. Reciprocal relations in irreversible processes. II. Physical Review38: 2265–2279.

    Article  CAS  Google Scholar 

  • —. 1969. The motion of ions: Principles and concepts. Science166: 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  • —. 1970. Possible mechanisms of ion transit. Pages 137–141in F. Snell, J. Wolken, G. Iverson & J. Lam (eds.), Physical principles of biological membranes. Proceedings of the Coral Gables Conference on Physical Principles of Biological Membranes. Gordon and Breach, New York.

    Google Scholar 

  • Orlózi, L. 1991. Entropy and information. SPB Academic Publishing, The Hague, Netherlands.

    Google Scholar 

  • Osterhaut, W. J. V. 1924. The nature of life. The Colver Lectures in Brown University. 1922. Henry Holt, New York.

    Google Scholar 

  • —. 1927. Some aspects of bioelectrical phenomena. J. Gen. Physiol.11: 83–99.

    Article  Google Scholar 

  • —. 1931. Physiological studies of single plant cells. Biol. Rev.6: 369–411.

    Article  Google Scholar 

  • —. 1934. Nature of the action current inNitella. I. General considerations. J. Gen. Physiol.18: 215–227.

    Article  Google Scholar 

  • —. 1958. Prefatory chapter. Studies of some fundamental problems by the use of aquatic organisms. Annual Rev. Physiol.20: 2–12.

    Google Scholar 

  • — &S. E. Hill. 1930a. Negative variations inNitella produced by chloroform and potassium chloride. J. Gen. Physiol.13: 459–467.

    Article  Google Scholar 

  • &—. 1930b. Salt bridges and negative variations. J. Gen. Physiol.13: 547–552.

    Article  Google Scholar 

  • &—. 1935. Positive variations inNitella. J. Gen. Physiol.18: 369–375.

    Article  Google Scholar 

  • Pal, B. P., B. C. Kundu, V. S. Sundaralingam &G. S. Venkataraman. 1962. Charophyta. Indian Council of Agricultural Research, New Delhi.

    Google Scholar 

  • Palevitz, B. A. &P. K. Hepler. 1974. Actin in the green alga,Nitella. Proc. Natl. Acad. Sci. U.S.A.71: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • &—. 1975. Identification of actinin situ at the ectoplasm-endoplasm interface ofNitella. J. Cell Biol.65: 29–38.

    Article  PubMed  CAS  Google Scholar 

  • Paszewski, A. &T. Zawadzki. 1973. Action potentials inLupinus angustifolius L. Shoots. J. Exp. Bot.24: 804–809.

    Article  Google Scholar 

  • Perrin, J. 1923. Atoms. D. Van Nostrand Co., New York.

    Google Scholar 

  • Pfeffer, W. 1875. Die Periodischen Bewegungen der Blattorgane. Engelmann, Leipzig.

    Google Scholar 

  • —. 1877. Osmotische Untersuchungen. Engelmann, Leipzig.

    Google Scholar 

  • Plckard, B. G. 1973. Action potentials in higher plants. Bot. Rev.39: 172–201.

    Article  Google Scholar 

  • —. 1984. Voltage transients elicited by sudden step-up of auxin. Pl. Cell Environm.7: 171–178.

    Google Scholar 

  • Plckard, W. F. 1969. The correlation between electrical behavior and cytoplasmic streaming inChara braunii. Canad. J. Bot.47: 1233–1240.

    Article  Google Scholar 

  • —. 1972. Further observations on cytoplasmic streaming inChara braunii. Canad. J. Bot.50: 703–711.

    Article  Google Scholar 

  • —. 1974. Hydrodynamic aspects of protoplasmic streaming inChara braunii. Protoplasma82: 321–339.

    Article  Google Scholar 

  • Plckett-Heaps, J. D. 1967a. Ultrastructure and differentiation inChara sp. I. Vegetative cells. Austral. J. Biol. Sci.20: 539–551.

    Google Scholar 

  • —. 1967b. Ultrastructure and differentiation inChara sp. II. Mitosis. Austral. J. Biol. Sci.20: 883–894.

    Google Scholar 

  • —. 1968. Ultrastructure and differentiation inChara (fibrosa). IV. Austral. J. Biol. Sci.21: 655–690.

    Google Scholar 

  • — &H. J. Marchant. 1972. The phylogeny of the green algae: A new proposal. Cytobios6: 255–264.

    Google Scholar 

  • Plng, Z., T. Mimura &M. Tazawa. 1990. Jumping transmission of action potential between separately placed internodal cells ofChara corallina. Pl. Cell Physiol.31: 299–302.

    Google Scholar 

  • PliniusSecundus, C. 1469. Historiae Naturalis, libri XXXVII. Venetiis.

  • Plonsey, R. &R. C. Barr. 1991. Bioelectricity. A quantitative approach. Plenum Press, New York.

    Google Scholar 

  • Plowes, J. Q. 1931a. Membranes in the plant cell. I. Morphological membranes at protoplasmic surfaces. Proto◊asma12: 196–220.

    Article  Google Scholar 

  • —. 1931b. Membranes in the plant cell. II. Localization of differential permeability in the plant protoplast. Protoplasma12: 221–240.

    Article  Google Scholar 

  • Pottosin, I.I., P. R. Andjus, D. Vucelic &G. N. Berestovsky. 1993. Effects of D2O on permeation and gating in the Ca2+-activated potassium channel fromChara. J. Membr. Biol.136: 113–124.

    Article  PubMed  CAS  Google Scholar 

  • Probine, M. C. &N. F. Barber. 1966. The structure and plastic properties of the cell wall ofNitella in relation to extension growth. Austral. J. Biol. Sci.19: 439–457.

    Google Scholar 

  • — &R. D. Preston. 1961. Cell growth and the structure and mechanical properties of the wall in internodal cellsoiNitella opaca. I. Wall structure and growth. J. Exp. Bot.12: 261–282.

    Article  CAS  Google Scholar 

  • &—. 1962. Cell growth and the structure and mechanical properties of the wall in internodal cells ofNitella opaca. II. Mechanical properties of the walls. J. Exp. Bot.13: 111–127.

    Article  CAS  Google Scholar 

  • Raisbeck, G. 1963. Information theory. An introduction for scientists and engineers. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Rea, P. A. &D. Sanders. 1987. Tonoplast energization: Two proton pumps, one membrane. Physiol. Pl.71: 131–141.

    Article  CAS  Google Scholar 

  • — &F. R. Whatley. 1983. The influence of secretion elicitors and external pH on the kinetics of D-alanine uptake by the trap lobes ofDionaeamuscipula Ellis (Venus’s flytrap). Planta158: 312–319.

    Article  CAS  Google Scholar 

  • —,D. M. Joel &B. E. Juniper. 1983. Secretion and redistribution of chloride in the digestive glands ofDionaea muscipula Ellis (Venus’s flytrap) upon secretion stimulation. New Phytol.94: 359–366.

    Article  CAS  Google Scholar 

  • Reid, R. J. &R. L. Overall. 1992. Intercellular communication inChara: Factors effecting transnodal electrical resistance and solute fluxes. Pl. Cell Environm.15: 507–517.

    Article  Google Scholar 

  • — &F. A. Smith. 1988. Measurement of the cytoplasmic pH ofChara corallina using doubled-barrelled pH microelectrodes. J. Exp. Bot.39: 1421–1432.

    Article  Google Scholar 

  • &—. 1993. Toxic effects of the ionophore A23187 onChara. Pl. Sci.91: 7–13.

    Article  CAS  Google Scholar 

  • —,— & J. Whittington. 1989. Control of intracellular pH inChara corallna during uptake of weak acid. J. Exp. Bot.40: 883–891.

    Article  CAS  Google Scholar 

  • Remington, R. E. 1928. The high frequency Wheatstone bridge as a tool in cytological studies; with some observations on the resistance and capacity of the cells of the beet root. Proto◊asma5: 338–399.

    Article  Google Scholar 

  • Rethy, R. 1968. Red (R), far-red (FR) photoreversible effects on the growth ofChara sporelings. Z. Pflanzen Physiol.59: 100–102.

    Google Scholar 

  • Richmond, P. A., J.-P. Métraux &L. Taiz J.-P. Métraux &L. Taiz. 1980. Cell expansion patterns and directionality of wall mechanical properties inNitella. Pl Physiol.65: 211–217.

    CAS  Google Scholar 

  • Robertson, R. N. 1992. A dilettante Australian plant physiologist. Annual Rev. Pl Physiol. Pl Molec. Biol.43: 1–24.

    Article  Google Scholar 

  • Robins, R. J. 1976. The nature of the stimuli causing digestive juice secretion inDionaea muscipula Ellis (Venus’s flytrap). Planta128: 263–265.

    Article  CAS  Google Scholar 

  • — &B. E. Juniper. 1980. The secretory cycle ofDionaea muscipula Ellis. I-V. New Phytol.86: 279–327, 401–422.

    Article  Google Scholar 

  • Rothstein, J. 1951. Information, measurement, and quantum mechanics. Science114: 171–175.

    Article  PubMed  Google Scholar 

  • Rüdinger, M., P. Hierling &E. Steudle. 1992. Osmotic biosensors. How to use characean internode for measuring the alcohol content of beer. Bot. Acta105: 3–12.

    Google Scholar 

  • Sakano, K. &M. Tazawa. 1986. Tonoplast origin of the envelope membrane of cytoplasmic droplets prepared fromChara internodal cells. Protoplasma131: 247–249.

    Article  Google Scholar 

  • Sakmann, B. &E. Neher (eds.). 1983. Single-channel recording. Plenum Press, New York.

    Google Scholar 

  • Samejima, M. &T. Sibaoka. 1982. Membrane potentials and resistances in excitable cells in the petiole and main pulvinus ofMimosa pudica. Pl Cell Physiol.23: 459–465.

    CAS  Google Scholar 

  • Sandlin, R., L. Lerman, W. Barry &I. Tasaki. 1968. Application of laser interferometry to physiological studies of excitable tissues. Nature217: 575–576.

    Article  PubMed  CAS  Google Scholar 

  • Scala, J., D. Schwab &E. Simmons. 1968. The fine structure of the digestive gland of Venus’s-flytrap. Amer. J. Bot.55: 649–657.

    Article  Google Scholar 

  • Schrödinger, E. 1946. What is life? The physical aspect of the living cell. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schwab, D. W., E. Simmons &J. Scala. 1969. Fine structure changes during function of the digestive gland of Venus’s-flytrap. Amer. J. Bot.56: 88–100.

    Article  Google Scholar 

  • Scott, I. H. 1962. Electricity in plants. Sci. Amer.207: 107–117.

    Google Scholar 

  • Setty, S. &M. J. Jaffe. 1972. Phytochrome-controlled rapid contraction and recovery of contractile vacuoles in the motor cells ofMimosa pudica as an intracellular correlate of nyctinasty. Planta108: 121–131.

    Article  Google Scholar 

  • Shannon, C. E. &W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, Illinois.

    Google Scholar 

  • Shen, E. Y. F. 1966. Oospore germination in two species ofChara. Taiwania12: 39–46.

    Google Scholar 

  • —. 1967. Microspectrophotometric analysis of nuclear DNA inChara zeylanica. J. Cell Biol.35: 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, V. A. &P. B. Goodwin. 1989. The porosity of permeabilizedChara cells. Austral. J. Pl. Physiol.16: 231–240.

    Google Scholar 

  • &—. 1992a. Seasonal patterns of cell-to-cell communication inChara corallina. Klein ex Willd. I. Cell-to-cell communication in vegetative lateral branches during winter and spring. Pl. Cell Environm.15: 137–150.

    Article  Google Scholar 

  • &—. 1992b. Seasonal patterns of cell-to-cell communication inChara corallina. Klein ex Willd. II. Cell-to-cell communication during the development of antheridia. Pl. Cell Environm.15: 151–162.

    Article  Google Scholar 

  • Sherman-Gold, R. 1993. The axon guide for electrophysiology and biophysics laboratory techniques. Axon Instruments Inc., Foster City, California.

    Google Scholar 

  • Shiina, T. &M. Tazawa. 1986a. Action potential inLuffa cylindlica and its effects on elongation growth. Pl. Cell Physiol.27: 1081–1089.

    Google Scholar 

  • &—. 1986b. Regulation of membrane excitation by protein phosphorylation inNitellopsis obtusa. Protoplasma134: 60–61.

    Article  CAS  Google Scholar 

  • &—. 1987a. Ca2+-activated Cl channel in plasmalemma ofNitellopsis obtusa. J. Membr. Biol.99: 137–146.

    Article  CAS  Google Scholar 

  • &—. 1987b. Demonstration and characterization of a Ca2+ channel in tonoplast-free cellsof Nitellopsis obtusa. J. Membr. Biol.96: 263–276.

    Article  CAS  Google Scholar 

  • &—. 1988. Calcium-dependent chloride efflux in tonoplast-free cells ofNitellopsis obtusa. J. Membr. Biol.106: 135–140.

    Article  CAS  Google Scholar 

  • —,R. Wayne, H. Y. L. Tung &M. Tazawa. 1988. Possible involvement of protein phosphorylation/dephosphorylation in the modulation of Ca2+ channels in tonoplast-free cells ofNitellopsis. J. Membr. Biol.102: 255–264.

    Article  CAS  Google Scholar 

  • Shimmen, T. 1988. Characean actin bundles as a tool for studying actomyosin-based motility. Bot. Mag. (Tokyo)101: 533–544.

    Article  CAS  Google Scholar 

  • — &E. A. C. MacRobbie. 1987. Characterization of two proton transport systems in the tonoplast of plasmalemma-permeabilizedNitella cells. Pl. Cell Physiol.28: 1023–1031.

    CAS  Google Scholar 

  • — &T. Mimura. (eds.). 1993. Giant cells of the Characeae. Model systems for studying cell motility and membrane transport. Proceedings of a symposium honoring the 80th birthday of Professor Noburo Kamiya, 4–6 September 1993. International Seminar House, Otsu, Japan.

    Google Scholar 

  • — &S. I. Nishikawa. 1988. Studies on the tonoplast action potential ofNitella flexilis. J. Membr. Biol.101: 133–140.

    Article  CAS  Google Scholar 

  • — &M. Tazawa. 1983a. Activation of K+-channel in membrane excitation ofNitella axillaformis. Pl. Cell Physiol.24: 1511–1524.

    CAS  Google Scholar 

  • &— &M. Tazawa. 1983b. Control of cytoplasmic streaming by ATP, Mg2+, and cytochalasin B in permeabilized Characeae cell. Protoplasma115: 18–24.

    Article  CAS  Google Scholar 

  • -& E. Yokota. 1994. The biochemistry of cytoplasmic streaming. Int. Rev. Cytol. In press.

  • — &S. Yoshida. 1993. Analysis of temperature dependence of cytoplasmic streaming using tonoplast-free cells of Characeae. Protoplasma176: 174–177.

    Article  Google Scholar 

  • Sibaoka, T. 1958. Conduction of action potential in the plant cell. Trans. Bose Res. Inst. Calcutta22: 43–56.

    Google Scholar 

  • —. 1962. Excitable cells inMimosa. Science137: 226.

    Article  PubMed  CAS  Google Scholar 

  • -. 1966. Action potentials in plant organs. In: Nervous and hormonal mechanisms of integration. Symp. Soc. Exp. Biol.20: 49–73.

  • —. 1969. Physiology of rapid movements in higher plants. Annual Rev. Pl Physiol.20: 165–184.

    Article  CAS  Google Scholar 

  • — &K. Oda. 1956. Shock stoppage of the protoplasmic streaming in relation to the action potential inChara. Sci. Rep. Tohoku Imp. Univ., Ser. 4, Biol.22: 157–166.

    Google Scholar 

  • — &T. Tabata. 1981. Electrotonic coupling between adjacent internodal cells inChara braunii: Transmission of action potentials beyond the node. Pl Cell Physiol.22: 397–411.

    Google Scholar 

  • Sievers, A. & D. Volkmann. 1979. GravitroPlsm in single cells. Pages 567–672in W. Haupt & M. E. Feinleib (eds.), Physiology of movements. Vol. 7 of A. Plrson & M. H. Zimmermann (eds.), Encyclopedia of plant physiology. New Series. Springer, Berlin.

  • Silk, W. K. 1984. Quantitative descriptions of development. Annual Rev. Pl Physiol.35: 479–518.

    Article  Google Scholar 

  • Simons, P. J. 1981. The role of electricity in plant movements. New. Phytol.87: 11–37.

    Article  CAS  Google Scholar 

  • Simons, P. 1992. The action plant. Blackwell, Oxford.

    Google Scholar 

  • Sinnott, E. W. 1946. Botany principles and problems. Ed. 4. McGraw-Hill, New York.

    Google Scholar 

  • Sinyukhin, A. M. &E. A. Britikov. 1967. Action potentials in the reproductive system of plants. Nature215: 1278–1230.

    Article  Google Scholar 

  • Skoog, F. (ed). 1951. Plant growth substances. University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Smith, J. E. 1788. Some observations on the irritability of vegetables. Philos. Trans.78: 158–165.

    Article  Google Scholar 

  • Smith, J. R. 1987. Potassium transport across membranes ofChara. II.42K fluxes and the electrical current as a function of membrane voltage. J. Exp. Bot.38: 752–777.

    Article  CAS  Google Scholar 

  • — &R. J. Kerr. 1987. Potassium transport across membranes ofChara. IV. Interactions with other cations. J. Exp. Bot.38: 788–799.

    Article  CAS  Google Scholar 

  • —,F. A. Smith &N. A. Walker. 1987a. Potassium transport across membranes ofChara. I. The relationship between radioactive tracer influx and electrical conductance. J. Exp. Bot.38: 731–751.

    Article  CAS  Google Scholar 

  • —,N. A. Walker &F. A. Smith. 1987b. Potassium transport across membranes ofChara. III. Effects of pH, inhibitors and illumination. J. Exp. Bot.38: 778–787.

    Article  CAS  Google Scholar 

  • Spanswick, R. M. 1970. Electrophysiological techniques and the magnitudes of the membrane potentials and resistances ofNitella translucens. J. Exp. Bot.21: 617–627.

    Article  Google Scholar 

  • —. 1974a. Hydrogen ion transport in giant algal cells. Canad. J. Bot.52: 1029–1034.

    Article  CAS  Google Scholar 

  • —. 1974b. Symplastic transport in plants. Symp. Soc. Exp. Biol.28: 127–137.

    PubMed  Google Scholar 

  • —. 1980. Biophysical control of electrogenic pumps in the Characeae. Pages 305–316in R. M. Spanswick, W. J. Lucas & J. Dainty (eds.), Plant membrane transport: Current conceptual issues. Elsevier/North Holland Biomedical, Amsterdam.

    Google Scholar 

  • —. 1981. Electrogenic ion pumps. Annual Rev. Pl Physiol.32: 267–289.

    Article  CAS  Google Scholar 

  • — &J. W. F. Costerton. 1967. Plasmodesmata inNitella translucens: Structure and electrical resistance. J. Cell Sci.2: 451–464.

    PubMed  CAS  Google Scholar 

  • —,J. Stolarek &E. J. Williams. 1967. The membrane potential ofNitella translucens. J. Exp. Bot.18: 1–16.

    Article  CAS  Google Scholar 

  • Spear, D. G., J. K. Barr &C. E. Barr. 1969. Localization of hydrogen ion and chloride ion fluxes inNitella. J. Gen. Physiol.54: 397–414.

    Article  PubMed  CAS  Google Scholar 

  • Splridonov, O. P. 1986. Universal physical constants. MIR Publishers, Moscow.

    Google Scholar 

  • Spyropoulos, C. S., I. Tasaki &G. Hayward. 1961. Fractionation of tracer effluxes during action potential. Science133: 2064–2065.

    Article  PubMed  Google Scholar 

  • Standen, N. B., P. T. A. Gray &M. J. Whitaker (eds.). 1987. Microelectrode techniques. The Plymouth Workshop handbook. Company of Biologists Ltd., Cambridge.

    Google Scholar 

  • Staves, M. P. &R. Wayne. 1993. The touch-induced action potential ofChara: Inquiry into the ionic basis and the mechanoreceptor. Austral. J. Pl. Physiol.20: 471–488.

    CAS  Google Scholar 

  • —,— &A. C. Leopold. 1992. Hydrostatic pressure mimics gravitational pressure in characean cells. Protoplasma168: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • —,—&—. 1993. Three distinct types of Ca2+ channels are involved in gravisensing and E-C coupling inChara. Pl. Physiol.102: S-14.

    Google Scholar 

  • Stein, W. D. 1986. Transport and diffusion across cell membranes. Academic Press, San Diego, California.

    Google Scholar 

  • —. 1990. Channels, carriers, and pumps. An introduction to membrane transport. Academic Press, San Diego, California.

    Google Scholar 

  • Stern, K. 1924. Elektrophysiologie der Pflanzen. Springer, Berlin.

    Google Scholar 

  • Steudle, E. &S. D. Tyerman. 1983. Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity ofChara corallina using the pressure probe: Effects of solute concentration. J. Membr. Biol.75: 85–96.

    Article  CAS  Google Scholar 

  • — &U. Zimmermann. 1974. Determination of the hydraulic conductivity and of reflection coefficients inNitella flexilis by means of direct cell-turgor pressure measurement. Biochim. Biophys. Acta332: 399–412.

    Article  Google Scholar 

  • Stevens, C. F. 1966. Neurophysiology: A primer. John Wiley & Sons, New York.

    Google Scholar 

  • Steward, F. C. 1935. Mechanism of salt absorption by plant cells. Nature135: 553–555.

    Article  Google Scholar 

  • —. 1986. Solutes in cells: Their responses during growth and development. Pages 551–594in F. C. Steward (ed.), Plant physiology. A. Treatise. Vol. 9, Water and solutes in plants. Academic Press, Orlando, Florida.

    Google Scholar 

  • Studener, O. 1947. Über die elektroosmotische Komponente des Turgors und über chemische und Konzentrationspotentiale pflanzlicher Zellen. Planta35: 427–444.

    Article  CAS  Google Scholar 

  • Stuhlman, O., Jr. &E. B. Darden. 1950. The action potentials obtained from Venus’s-flytrap. Science111: 491–492.

    Article  PubMed  Google Scholar 

  • Sun, G.-H., T. Q. P. Uyeda &T. Kuroiwa. 1988. Destruction of organelle nuclei during spermatogenesis inChara corallina examined by staining with DAPl and anti-DNA antibody. Protoplasma144: 185–188.

    Article  Google Scholar 

  • Szent-Györgi, A. 1960. Introduction to a submolecular biology. Academic Press, New York.

    Google Scholar 

  • Szilard, L. 1964. On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings. Behavioral Sci.9: 301–310.

    Article  CAS  Google Scholar 

  • Tabata, T. 1990. Ephaptic transmission and conduction velocity of an action potential inChara internodal cells placed in parallel and in contact with one another. Pl. Cell Physiol.31: 575–579.

    Google Scholar 

  • Takamatsu, A., T. Aoki &Y. Tsuchiya. 1993. Ca2+ effect on protoplasmic streaming inNitella internodal cell. Biophys. J.64: 182–186.

    CAS  PubMed  Google Scholar 

  • Takatori, S. &K. Imahori. 1971. Light reactions in the control of oospore germination ofChara delicatula. Phycologia10: 221–228.

    Google Scholar 

  • Takenaka, T., T. Yoshioka &H. Horie. 1975. Physiological properties of protoplasmic drops ofNitella. Advances Biophys.7: 193–213.

    CAS  Google Scholar 

  • Takeshige, K. &M. Tazawa. 1989. Determination of the inorganic pyrophosphate level and its subcellular localization inChara corallina. J. Biol. Chem.264: 3262–3266.

    PubMed  CAS  Google Scholar 

  • —,— &A. Hager. 1988. Characterization of the H+ translocating adenosine triphosphatase and pyrophosphatase of vacuolar membranes isolated by means of a perfusion technique fromChara corallina. Pl. Physiol.86: 1168–1173.

    CAS  Google Scholar 

  • Tasaki, I. 1968. Nerve excitation. A macromolecular approach. Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Taylor, C. V. &D. M. Whitaker. 1927. Potentiometric determinations in the protoplasm and cell-sap ofNitella. Protoplasma3: 1–6.

    Article  CAS  Google Scholar 

  • Tazawa, M. 1957. Neue Methode zur Messung des osmotischen Wertes einer Zelle. Protoplasma48: 342–359.

    Article  Google Scholar 

  • —. 1964. Studies onNitella having artificial cell sap. I. Replacement of the cell sap with artificial solutions. Pl. Cell Physiol.5: 33–43.

    CAS  Google Scholar 

  • —. 1984. Excitable membranes—plants. Cell Struct. Function9: S47-S50.

    Article  Google Scholar 

  • —, &U. Kishimoto. 1964. Studies onNitella having artificial cell sap. II. Rate of cyclosis and electric potential. Pl. Cell Physiol.5: 45–59.

    CAS  Google Scholar 

  • — &T. Shimmen. 1987. Cell motility and ionic relations in characean cells as revealed by internal perfusion and cell models. Int. Rev. Cytol.109: 259–312.

    Article  CAS  Google Scholar 

  • —,— &T. Mimura. 1987. Membrane control in the characeae. Annual Rev. Pl. Physiol.38: 95–117.

    Article  CAS  Google Scholar 

  • —,T. Yoko-o, T. Mimura &M. Kikuyama. 1994. Intracellular mobilization of Ca2+ and inhibition of cytoplasmic streaming induced by transcellular osmosis in internodal cells ofNitella flexilis. Pl. Cell Physiol.35: 63–72.

    CAS  Google Scholar 

  • Teorell, T. 1953. Transport precesses and electrical phenomena in ionic membranes. Prog. Biophys. Biophys. Chem.3: 305–369.

    CAS  Google Scholar 

  • Tester, M. 1988. Blockade of potassium channels in the plasmalemma ofChara corallina by tetraethylammonium, Ba2+, Na+ and Cs+. J. Membr. Biol.105: 77–85.

    Article  Google Scholar 

  • Thiel, G., E. A. C. MacRobbie &D. E. Hanke. 1990. Raising the intracellular level of inositol 1,4,5-trisphosphate changes plasma membrane ion transport in characean algae. E.M.B.O.J.9: 1737–1741.

    CAS  Google Scholar 

  • Thompson, D. W. 1963. On growth and form. Ed. 2. Cambridge University Press, Cambridge.

    Google Scholar 

  • Thomson, J. A. 1932. Scientific riddles. Williams & Norgate, London.

    Google Scholar 

  • Tinz-Füchtmeier, A. &D. Gradmann. 1991. Laser-interferometric re-examination of rapid conductance of excitation inMimosa pudica. J. Exp. Bot.41: 15–19.

    Article  Google Scholar 

  • Tolbert, N. E. &L. P. Zill. 1954. Photosynthesis by protoplasm extruded fromChara andNitella. J. Gen. Physiol.37: 575–589.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, Y., R. Wayne, H. Y. L. Tung &M. Tazawa. 1986. Phosphorylation-dephosphorylation is involved in Ca2+-controlled cytoplasmic streaming of Characean cells. Protoplasma136: 161–169.

    Article  Google Scholar 

  • Toriyama, H. 1954. Observational and experimental studies of sensitive plants. II. On the changes in motor cells of diurnal and nocturnal conditions. Cytologia19: 29–40.

    Google Scholar 

  • —. 1955. Observational and experimental studies of sensitive plants. VI. The migration of potassium in the primary pulvinus. Cytologia20: 367–377.

    Google Scholar 

  • —. 1957. Observational and experimental studies of sensitive plants. VIII. The migration of colloidal substance in the primary pulvinus. Cytologia22: 184–192.

    Google Scholar 

  • —. 1967. A comparison ofthe Mimosa motor cell before and after stimulation. Proc. Japan Acad.43: 541–546.

    Google Scholar 

  • — &M. J. Jaffe. 1972. Migration of calcium and its role in the regulation of Scismonasty in the motor cell ofMimosa pudica. L. Pl Physiol.49: 72–81.

    CAS  Google Scholar 

  • — &S. Sato. 1968. Electron microscope observation of the motor cell ofMimosa pudica L. I. A comparison of the motor cell before and after stimulation. Proc. Japan Acad.44: 702–706.

    Google Scholar 

  • Tretyn, A. &R. E. Kendrick. 1991. Acetylcholine in plants: Pressence, metabolism and mechanism of action. Bot. Rev.57: 33–73.

    Article  Google Scholar 

  • Trewavas, A. J. (ed.). 1986. Molecular and cellular aspects of calcium in plant development. Plenum Press, New York.

    Google Scholar 

  • Tribus, M. &E. C. Mclrvine. 1971. Energy and information. Sci. Amer.225: 179–188.

    Article  Google Scholar 

  • Trontelj, Z., R. Zorec, V. Jazbinsek &S. N. Erné. 1994. Magnetic detection of a single action potential inChara corallina internodal cells. Biophys. J.66: 1694–1696.

    PubMed  CAS  Google Scholar 

  • Tsutsui, I. &T. Ohkawa. 1993. N-Ethylmaleimide blocks the H+ pump in the plasma membrane ofChara corallina internodal cells. Pl. Cell Physiol.34: 1159–1162.

    CAS  Google Scholar 

  • —,—,R. Nagai &U. Kishimoto. 1987a. Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane I. Effects of La3+, EGTA, and calmodulin antagonists on the action potential. J. Membr. Biol.96: 65–73.

    Article  CAS  Google Scholar 

  • —,—,—&—. 1987b. Role of calcium ion in the excitability and electrogenic pump activity of theChara corallina membrane II. Effects of La3+, EGTA, and calmodulin antagonists on the current-voltage relation. J. Membr. Biol.96: 75–84.

    Article  CAS  Google Scholar 

  • —,R. Nagai, T. Ohkawa &U. Kishimoto. 1987c. Effects of divalent cations on the excitability and on the cytoplasmic streaming ofChara corallina. Pl. Cell Physiol.28: 741–751.

    CAS  Google Scholar 

  • Tucker, E. B. 1987. Cytoplasmic streaming does not drive intercellular passage in staminal hairs ofS. purpurea. Proto◊asma137: 140–144.

    Article  Google Scholar 

  • Turner, F. R. 1968. An ultrastructural study of plant spermatogenesis. Spermatogenesis inNitella. J. Cell Biol.37: 370–393.

    Article  PubMed  CAS  Google Scholar 

  • —. 1970. The effects of colchicine on spermatogenesis inNitella. J. Cell Biol.46: 220–233.

    Article  PubMed  CAS  Google Scholar 

  • Turnquist, H. M., N. S. Allen &M. J. Jaffe. 1993. A pharmacological study of calcium flux mechanisms in the tannin vacuole ofMimosa pudica. L. motor cells. Protoplasma176: 91–99.

    Article  CAS  Google Scholar 

  • Tyerman, S. D. 1992. Anion channels in plants. Annual Rev. Pl. Physiol. Pl. Molec. Biol.43: 351–373.

    Article  CAS  Google Scholar 

  • Ueda, T., K. Kurihara &Y. Kobatake. 1975a. Response ofNitella internodal cell to chemical stimulation. J. Membr. Biol.25: 271–284.

    Article  PubMed  Google Scholar 

  • —,M. Muratsugu, K. Kurihara &Y. Kobatake. 1975b. Olfactory response in excitable protoplasmic droplet and internodal cell ofNitella. Nature253: 629–630.

    Article  PubMed  CAS  Google Scholar 

  • Umrath, K. 1930. Untersuchungen über Plasma und Plasmaströmung an Characeen. IV. Potentialmessungen anNitella mucronata mit besonderer Berücksichtigung der Erregungserscheinung. Protoplasma9: 576–597.

    Article  Google Scholar 

  • —. 1932. Die Bildung von Plasmalemma (Plasmahaut) beiNitella mucronata. Protoplasma16: 173–188.

    Article  Google Scholar 

  • —. 1933. Der Erregungsvorgang beiNitella mucronata. Protoplasma17: 259–300.

    Article  Google Scholar 

  • —. 1934. Der Einfluss der Temperatur auf das elektrische Potential, den Aktionsstrom und die Protoplasmaströmung beiNitella mucronata. Protoplasma21: 229–334.

    Article  Google Scholar 

  • —. 1940. Über die Art der elektrischen Polarisierbarkeit und der elektrischen Erregbarkeit beiNitella. Protoplasma34: 469–483.

    Article  Google Scholar 

  • Ussing, H. H. 1949a. The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol. Scand.17: 1–37.

    Article  PubMed  CAS  Google Scholar 

  • —. 1949b. The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand.19: 43–56.

    CAS  Google Scholar 

  • — &K. Zerahn. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand.23: 110–127.

    PubMed  CAS  Google Scholar 

  • van Ness, H. C. 1983. Understanding thermodynamics. Dover Publications, New York.

    Google Scholar 

  • Volkmann, D., B. Buchen, Z. Hejnowicz, M. Tewinkel &A. Sievers. 1991. Oriented movement of statoliths studied in a reduced gravitational field during parabolic flights of rockets. Planta185: 153–161.

    Article  PubMed  CAS  Google Scholar 

  • von Guttenberg, H. 1971. Bewegunsgewebe und Perzeptionsorgane. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • von Neumann, J. 1963. Design of computers, theory of automata and numerical analysis. Vol. 5 of A. H. Taub (ed.), Collected works. Pergamon Press, New York.

    Google Scholar 

  • Vorobiev, L. N. 1967. Potassium ion activity in the cytoplasm and the vacuole of cells ofChara andGriffithsia. Nature216: 1325–1327.

    Article  PubMed  CAS  Google Scholar 

  • Walker, N. A. 1955. Microelectrode experiments onNitella. Austral. J. Biol. Sci.8: 476–489.

    CAS  Google Scholar 

  • —. 1957. Ion permeability of the Plasmalemma of the plant cell. Nature180: 94–95.

    Article  PubMed  CAS  Google Scholar 

  • — &A. B. Hope. 1969. Membrane fluxes and electric conductance in characean cells. Austral. J. Biol. Sci.22: 1179–1195.

    CAS  Google Scholar 

  • — &D. Sanders. 1991. Sodium-coupled solute transport in charophyte algae: A general mechanism for transport energization in plant cells? Planta185: 443–445.

    Article  CAS  Google Scholar 

  • Wasteneys, G. O., B. E. S. Gunning &P. K. Hepler. 1993. Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells. Cell Motility and Cytoskeleton24: 205–213.

    Article  Google Scholar 

  • — &R. E. Williamson. 1992. Microtubule organization differs between acid and alkaline bands in internodal cells ofChara but bands can develop in the absence of microtubules. Planta188: 99–105.

    Article  CAS  Google Scholar 

  • Wayne, R. 1992. What remains of the Cholodny-Went theory? While there is probable cause to take it to court, there is not a preponderance of evidence to throw it out. Pl. Cell Environm.15: 791–792.

    CAS  Google Scholar 

  • . 1993. The excitability of plant cells. Amer. Sci.81: 140–151.

    Google Scholar 

  • -, T.Mimura & T. Shimmen. 1994. The relationship between carbon and water transport in single cells ofChara corallina. Protoplasma (in press).

  • —,M. P. Staves &A. C. Leopold. 1990. Gravity-dependent polarity of cytoplasmic streaming inNitellopsis. Protoplasma155: 43–57.

    Article  PubMed  CAS  Google Scholar 

  • —,—&—. 1992. The contribution of the extracellular matrix to gravisensing in characean cells. J. Cell Sci.101: 611–623.

    PubMed  CAS  Google Scholar 

  • —,— &M. Rutzke. 1993. Inhibitors of gravisensing and E-C coupling differentially reduce Sr2+ (Ca2+) influx across the plasma membrane ofChara internodal cells. Pl. Physiol.102: S-14.

    Google Scholar 

  • -& M. Tazawa. 1988. The actin cytoskeleton and polar water permeability in Characean cells. Protoplasma [Suppl. 2]: 116–130.

  • &—. 1990. Nature of the water channels in the internodal cells ofNitellopsis. J. Membr. Biol.116: 31–39.

    Article  PubMed  CAS  Google Scholar 

  • Weidmann, S. 1949a. Subthreshold rectifier properties ofNitella. Acta Physiol. Scand.19: 218–229.

    Google Scholar 

  • —. 1949b. Initiation of break response inNitella. Acta Physiol. Scand.19: 230–236.

    Google Scholar 

  • Weintraub, M. 1951. Leaf movements inMimosa pudica. New Phytol.50: 357–382.

    Article  Google Scholar 

  • Weisenseel, M. H. &H. K. Ruppert 1977. Phytochrome and calcium ions are involved in light-induced membrane depolarization inNitella. Planta137: 225–229.

    Article  CAS  Google Scholar 

  • Went, F. W. &K. V. Thimann. 1937. Phytohormones. Macmillan, New York.

    Google Scholar 

  • Wheatstone, C. 1855. An account of some experiments made with the submarine cable of the Mediterranean electric telegraph. Proc. Roy. Soc. London7: 328–333.

    Google Scholar 

  • Wilcox, L. W., P. A. Fuerst &G. L. Floyd. 1993. Phylogenetic relationships of four charophycean green algae inferred from complete nuclear-encoded small subunit rRNA gene sequences. Amer. J. Bot.80: 1028–1033.

    Article  CAS  Google Scholar 

  • Wildon, D. C., J. F. Thain, P. E. H. Minchin, I. R. Gubb, A. J. Reilly, Y. D. Skipper, H. M. Doherty, P. J. O’Donnell &D. J. Bowles. 1992. Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature360: 62–65.

    Article  CAS  Google Scholar 

  • Williams, E. J. &J. Bradley. 1968. Voltage-clamp and current-clamp studies on the action potential inNitella translucens. Biochim. Biophys. Acta150: 626–639.

    Article  PubMed  CAS  Google Scholar 

  • —,R. J. Johnson &J. Dainty. 1964. The electrical resistance and capacitance of the membranes ofNitella translucens. J. Exp. Bot.15: 1–14.

    Article  Google Scholar 

  • Williams, S. E. &A. B. Bennett 1982. Leaf closure in the Venus flytrap: An acid growth response. Science218: 1120–1122.

    Article  PubMed  CAS  Google Scholar 

  • — &B. G. Pkkard. 1972a. Properties of action potentials inDrosera tentacles. Planta103: 193–221.

    Article  Google Scholar 

  • &—. 1972b. Receptor potentials and action potentials inDrosera tentacles. Planta103: 222–240.

    Article  Google Scholar 

  • — &R. M. Spanswick. 1976. Propagation of the neuroid action potential of the carnivorous plantDrosera. J. Comp. Physiol.108: 211–223.

    Article  Google Scholar 

  • Williamson, R. E. 1975. Cytoplasmic streaming in Chora:A cell model activated by ATP and inhibited by cytochalasin B. J. Cell Sci.17: 655–668.

    PubMed  CAS  Google Scholar 

  • — &C. C. Ashley. 1982. Free Ca2+ and cytoplasmic streaming in the algaChara. Nature296: 647–650.

    Article  PubMed  CAS  Google Scholar 

  • Wood,R. D. & K. Imahori. 1964. A revision of the Characeae. Volume I. Cramer, Weinheim.

  • -&-. 1965. A revision of the Characeae. Volume II. Cramer, Weinheim.

  • Yao, X., M. A. Bisson &L. J. Brzezicki. 1992. ATP-driven proton pumping in two species ofChara differing in salt tolerance. Pl. Cell Environm.15: 199–210.

    Article  CAS  Google Scholar 

  • Young, J. Z. 1936. Structure of nerve fibres and synapses in some invertebrates. Cold Spring Harbor Symp. Quant. Biol.4: 1–6.

    CAS  Google Scholar 

  • —. 1947. The history of the shape of a nerve-fibre. Pages 41–94in W. E. Le Gros Clark & P. Medawar (eds.), Essays on growth and form. Presented to D’Arcy Wentworth Thompson. Oxford University Press, Oxford.

    Google Scholar 

  • Young, P. 1987. The nature of information. Praeger, New York.

    Google Scholar 

  • Zanello, L. P. &F. J. Barrantes. 1992. Blockade of the K+ channel ofChara contraria by Cs+ and tetraethylammonium resembles that of K+ channels in animal cells. Pl. Sci.86: 49–58.

    Article  CAS  Google Scholar 

  • &—. 1994. Temperature sensitivity of the K+ channel ofChara. A thermodynamic analysis. Pl. Cell Physiol.35: 243–255.

    CAS  Google Scholar 

  • Zhang, W., H. Yamane, N. Takahashi, D. J. Chapman &B. O. Phinney. 1989. Identification of a cytokinin in the green algaChara globularis. Phytochemistry28: 337–338.

    Article  CAS  Google Scholar 

  • Zhu, G. L. &J. S. Boyer. 1992. Enlargement inChara studied with a turgor clamp. Pl. Physiol.100: 2071–2080.

    Google Scholar 

  • Zimmerman, U. &F. Beckers. 1978. Generation of action potentials inChara corallina by turgor pressure changes. Planta138: 173–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Noburo Kamiya on the occasion of his eightieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wayne, R. The excitability of plant cells: With a special emphasis on characean internodal cells. Bot. Rev 60, 265–367 (1994). https://doi.org/10.1007/BF02960261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02960261

Keywords

Navigation