Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTLA-4 up-regulation plays a role in tolerance mediated by CD45

Abstract

Cytolytic T lymphocyte–associated antigen 4 (CTLA-4) is a critical down-regulatory molecule in T cells that plays a major role in peripheral tolerance. Although the CD45 protein tyrosine phosphatase is a potent immunomodulatory target, the mechanisms by which antibody against CD45RB isoforms (anti-CD45RB) induces allograft tolerance remain unclear. We show here that anti-CD45RB treatment alters CD45 isoform expression on T cells, which is associated with rapid up-regulation of CTLA-4 expression. These effects appear specific and occur without up-regulation of other activation markers. Administration of a blocking monoclonal antibody to CTLA-4 at the time of transplantation prevents anti-CD45RB therapy from prolonging islet allograft survival. In addition, treatment with cyclosporin A blocks anti-CD45RB–induced CTLA-4 expression and promotes acute rejection. These data suggest that anti-CD45RB acts through mechanisms that include CTLA-4 up-regulation and demonstrate a link between CD45 and CTLA-4 that depends on calcineurin-mediated signaling. They demonstrate also that CTLA-4 expression may be specifically targeted to enhance allograft acceptance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anti–CTLA-4 does not alter the anti-CD45RB–mediated shift in CD45 isoforms.
Figure 2: CTLA-4 expression is up-regulated by anti-CD45RB treatment.
Figure 3: Time course of the shift in CD45 isoforms and CTLA-4 induction after anti-CD45RB treatment.
Figure 4: Anti-CD45RB treatment does not induce expression of other activation markers.
Figure 5: CsA blocks the anti-CD45RB–mediated increase in CTLA-4 expression on CD4 cells and inhibits prolongation of allograft survival.

Similar content being viewed by others

References

  1. Tivol, E. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  2. Waterhouse P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  Google Scholar 

  3. Perez, V. L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  Google Scholar 

  4. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  Google Scholar 

  5. Luhder, F., Hoglund, P., Allison, J. P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    Article  CAS  Google Scholar 

  6. Karandikar, N. J., Vanderlugt, C. L., Walunas, T. L., Miller, S. D. & Bluestone, J. A. CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med. 184, 783–788 (1996).

    Article  CAS  Google Scholar 

  7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  Google Scholar 

  8. Judge, T. A. et al. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J. Immunol. 162, 1947–1951 (1999).

    CAS  PubMed  Google Scholar 

  9. Linsley, P. S. et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535–543 (1996).

    Article  CAS  Google Scholar 

  10. Alegre, M. L. et al. Regulation of surface and intracellular expression of CTLA4 on mouse T cells. J. Immunol. 157, 4762–4770 (1996).

    CAS  PubMed  Google Scholar 

  11. Finn, P. W. et al. Synergistic induction of CTLA-4 expression by costimulation with TCR plus CD28 signals mediated by increased transcription and messenger ribonucleic acid stability. J. Immunol. 158, 4074–4081 (1997).

    CAS  PubMed  Google Scholar 

  12. Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    Article  CAS  Google Scholar 

  13. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  Google Scholar 

  14. Trowbridge, I. S. & Thomas, M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Ann. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  Google Scholar 

  15. Kashio, N., Matsumoto, W., Parker, S. & Rothstein, D. M. The second domain of the CD45 transmembrane protein tyrosine phosphatase is critical for IL-2 secretion and for recruitment of substrates in vivo. J. Biol. Chem. 273, 33856–33863 (1998).

    Article  CAS  Google Scholar 

  16. Bottomly, K. et al. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur. J. Immunol. 19, 617–623 (1989).

    Article  CAS  Google Scholar 

  17. Lee, W., Yin, X.-M. & Vitetta, E. Functional and ontogenetic analysis of murine CD45hi and CD45lo CD4+ T cells. J. Immunol. 144, 3288–3295 (1990).

    CAS  PubMed  Google Scholar 

  18. Powrie, F. et al. Inhibition of Th1 response prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  Google Scholar 

  19. Morimoto, C., Letvin, N. L., Distaso, J. A., Aldrich. W. R. & Schlossman, S. F. The isolation and characterization of the human suppressor inducer T cell subset. J. Immunol. 134, 1508–1515 (1985).

    CAS  PubMed  Google Scholar 

  20. Rothstein, D. M., Yamada, A., Schlossman, S. F. & Morimoto, C. Cyclic regulation of CD45 isoform expression in a long-term human CD4+CD45RA+ T cell line. J. Immunol. 146, 1175–1183 (1991).

    CAS  PubMed  Google Scholar 

  21. Sparshott, S. & Bell, E. Membrane CD45R isoform exchange on CD4 T cells is rapid, frequent and dynamic in vivo. Eur. J .Immunol. 24, 2573–2578 (1994).

    Article  CAS  Google Scholar 

  22. Michie, C. A., McLean, A., Alcock, C. & Beverley, P. C. L. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360, 264–265 (1992).

    Article  CAS  Google Scholar 

  23. McKenney, D. W., Onodera, H., Gorman, L., Mimura, T. & Rothstein, D. M. Individual isoforms of the CD45 protein tyrosine phosphatase differentially regulate IL-2 secretion and activation signal pathways involving Vav in T cells. J. Biol. Chem. 270, 24949–24954 (1995).

    Article  CAS  Google Scholar 

  24. Onodera, H., Motto, D. G., Koretzky, G. A. & Rothstein, D. M. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein tyrosine phosphatase. J. Biol. Chem. 271, 2225–2230 (1996).

    Article  Google Scholar 

  25. Novak, T. et al. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1, 109–119 (1994).

    Article  CAS  Google Scholar 

  26. Basadonna, G. et al. Antibody mediated targeting of CD45 isoforms: A novel immunotherapeutic strategy. Proc. Natl Acad. Sci. USA 95, 3821–3826 (1998).

    Article  CAS  Google Scholar 

  27. Lazarovits, A. et al. Prevention and reversal of renal allograft rejection by antibody against CD45RB. Nature 380, 717–720 (1996).

    Article  CAS  Google Scholar 

  28. Metz, D. P., Farber, D. L., Taylor, T. & Bottomly, K. Differential role of CTLA-4 in regulation of resting memory versus naïve CD4 T cell activation. J. Immunol. 161, 5855–5861 (1998).

    CAS  PubMed  Google Scholar 

  29. Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144–151 (1997).

    CAS  PubMed  Google Scholar 

  30. Croft, M., Duncan, D. D. & Swain, S. L. Response of naïve antigen-specific CD4+ T cells in vitro: characteristics and antigen-presenting cell requirements. J. Exp. Med. 176, 1431–1437 (1992).

    Article  CAS  Google Scholar 

  31. Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  Google Scholar 

  32. Walunas, T. L. & Bluestone, J. A. CTLA-4 regulates tolerance induction and T cell differentiation in vivo. J. Immunol. 160, 3855–3860 (1998).

    CAS  PubMed  Google Scholar 

  33. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  Google Scholar 

  34. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  Google Scholar 

  35. Perkins, D. et al. Regulation of CTLA-4 expression during T cell activation. J. Immunol. 156, 4154–4159 (1996).

    CAS  PubMed  Google Scholar 

  36. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    Article  CAS  Google Scholar 

  37. Schneider, H. et al. Cytolytic T lymphocyte-associated antigen-4 and the TCR ζ/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868–1879 (1999).

    CAS  PubMed  Google Scholar 

  38. Rothstein, D. M., Saito, H., Streuli, M., Schlossman, S. F. & Morimoto, C. The alternative splicing of the CD45 tyrosine phosphatase is controlled by negative regulatory trans-acting splicing factors. J. Biol. Chem. 267, 7139–7147 (1992).

    CAS  PubMed  Google Scholar 

  39. Tedder, T. F., Clement, L. T. & Cooper, M. D. Human lymphocyte differentiation antigens HB-10 and HB-11 I. Ontogeny of antigen expression. J. Immunol. 134, 2983–2988 (1985).

    CAS  PubMed  Google Scholar 

  40. Bell, E. B. & Sparshott, S. M. Interconversion of CD45R subsets of CD4 T cell in vivo. Nature 348, 163–166 (1990).

    Article  CAS  Google Scholar 

  41. Leitenberg, D., Novak, T., Farber, D. L., Smith, B. R. & Bottomly, K. The extracellular domain of CD45 controls association with the CD4/T cell receptor complex and the response to antigen specific stimulation. J. Exp. Med. 183, 249–259 (1996).

    Article  CAS  Google Scholar 

  42. Leitenberg, D., Constant, S., Lu, D. D., Smith, B. R. & Bottomly, K. CD4 and CD45 regulate qualitatively distinct patterns of calcium mobilization in individual CD4+ T cells. Eur. J .Immunol. 25, 2445–2451 (1995).

    Article  CAS  Google Scholar 

  43. Desai, D., Sap, J., Schlessinger, J. & Weiss, A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554 (1993).

    Article  CAS  Google Scholar 

  44. Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nature Med. 5, 1298–1302 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by the NIH (grants AI-36317 and AI-45485 to D. M. R. and AI-41521 to M. H. S.) and the Juvenile Diabetes Foundation International (G. P. B. and S. F.). We thank J. Allison for the gift of reagents and K. Bottomly, D. Metz, J. Madreans and Z. Yin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Rothstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fecteau, S., Basadonna, G., Freitas, A. et al. CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nat Immunol 2, 58–63 (2001). https://doi.org/10.1038/83175

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing