Skip to main content
Log in

Importance of C-Terminal Extension in Thermophilic 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

By sequence comparison, the majority of 1,4-α-glucan-branching enzymes (GBEs) consist of an N-terminal carbohydrate-binding domain, a TIM-barrel catalytic domain, and a C-terminal all-beta domain. Among these structures, the GBE from Geobacillus thermoglucosidans STB02 uniquely has a highly charged 26-amino-acid C-terminal extension, whose functional roles are the least understood. In this research, the functional significance of the C-terminal domain in GBE from G. thermoglucosidans STB02 and its extension were assessed using a C-terminal deletion analysis. Mutants lacking of more than 7 residues of the C-terminal all-beta domain could not be detected in lysates of their Escherichia coli expression strains, suggesting that an intact all-beta domain is required for structural stability. In contrast, truncation of the C-terminal extension resulted in greater stability and solubility than the wild type, as well as a lower sensitivity to the presence of added metal ions. Comparison of this mutant with the wild type suggests that the interaction of metal ions with the C-terminal extension influences performance of this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sawada, T., Itoh, M., & Nakamura, Y. (2018). Contributions of three starch branching enzyme isozymes to the fine structure of amylopectin in rice endosperm. Frontiers in Plant Science, 9.

  2. Suzuki, E., & Suzuki, R. (2016). Distribution of glucan-branching enzymes among prokaryotes. Cellular and Molecular Life Sciences, 73(14), 2643–2660.

    Article  CAS  Google Scholar 

  3. Feng, L., Fawaz, R., Hovde, S., Gilbert, L., Chiou, J., & Geiger, J. H. (2015). Crystal structures of Escherichia coli branching enzyme in complex with linear oligosaccharides. Biochemistry, 54(40), 6207–6218.

    Article  CAS  Google Scholar 

  4. Deng, Z. M., Yang, H. Q., Li, J. H., Shin, H. D., Du, G. C., Liu, L., & Chen, J. (2014). Structure-based engineering of alkaline alpha-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability. Applied Microbiology and Biotechnology, 98(9), 3997–4007.

    Article  CAS  Google Scholar 

  5. Ban, X. F., Li, C. M., Gu, Z. B., Bao, C. H., Qiu, Y. J., Hong, Y., Cheng, L., & Li, Z. F. (2016). Expression and biochemical characterization of a thermostable branching enzyme from Geobacillus thermoglucosidans. Journal of Molecular Microbiology and Biotechnology, 26(5), 303–311.

    Article  CAS  Google Scholar 

  6. Wang, L., Liu, Q. H., Hu, J. F., Asenso, J., Wise, M. J., Wu, X., Ma, C., Chen, X. Q., Yang, J. Y., & Tang, D. Q. (2019). Structure and evolution of glycogen branching enzyme N-termini from bacteria. Frontiers in Microbiology, 9.

  7. Park, B. H., Karpinets, T. V., Syed, M. H., Leuze, M. R., & Uberbacher, E. C. (2010). CAZymes Analysis Toolkit (CAT): Web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology, 20(12), 1574–1584.

    Article  CAS  Google Scholar 

  8. Amagliani, L., O'Regan, J., Kelly, A. L., & O'Mahony, J. A. (2016). Chemistry, structure, functionality and applications of rice starch. Journal of Cereal Science, 70, 291–300.

    Article  CAS  Google Scholar 

  9. Na, S., Park, M., Jo, I., Cha, J., & Ha, N. C. (2017). Structural basis for the transglycosylase activity of a GH57-type glycogen branching enzyme from Pyrococcus horikoshii. Biochemical and Biophysical Research Communications, 484(4), 850–856.

    Article  CAS  Google Scholar 

  10. Ban, X. F., Dhoble, A. S., Li, C. M., Zhang, Y. Z., Gu, Z. B., Cheng, L., Hong, Y., & Li, Z. F. (2017). Potassium and sodium ions enhance the activity and thermostability of 1,4-alpha-glucan branching enzyme from Geobacillus thermoglucosidasius in the presence of glycerol. International Journal of Biological Macromolecules, 102, 712–717.

    Article  CAS  Google Scholar 

  11. Li, Y., Li, C. M., Gu, Z. B., Cheng, L., Hong, Y., & Li, Z. F. (2019). Digestion properties of corn starch modified by alpha-D-glucan branching enzyme and cyclodextrin glycosyltransferase. Food Hydrocolloids, 89, 534–541.

    Article  CAS  Google Scholar 

  12. Liu, Y. T., Ban, X. F., Li, C. M., Gu, Z. B., Cheng, L., Hong, Y., & Li, Z. F. (2017). Met349 mutations enhance the activity of 1,4-alpha-glucan branching enzyme from Geobacillus thermoglucosidans STB02. Journal of Agricultural and Food Chemistry, 65, 5674–5680.

    Article  CAS  Google Scholar 

  13. Dkhar, H. K., Gopalsamy, A., Loharch, S., Kaur, A., Bhutani, I., Saminathan, K., Bhagyaraj, E., Chandra, V., Swaminathan, K., Agrawal, P., Parkesh, R., & Gupta, P. (2015). Discovery of Mycobacterium tuberculosis alpha-1,4-glucan branching enzyme (GlgB) inhibitors by structure- and ligand-based virtual screening. Journal of Biological Chemistry, 290(1), 76–89.

    Article  CAS  Google Scholar 

  14. Liu, Y. T., Li, C. M., Gu, Z. B., Xin, C. H., Cheng, L., Hong, Y., & Li, Z. F. (2017). Alanine 310 is important for the activity of 1,4-alpha-glucan branching enzyme from Geobacillus thermoglucosidans STB02. International Journal of Biological Macromolecules, 97, 156–163.

    Article  CAS  Google Scholar 

  15. Hayashi, M., Suzuki, R., Colleoni, C., Ball, S. G., Fujita, N., & Suzuki, E. (2017). Bound substrate in the structure of cyanobacterial branching enzyme supports a new mechanistic model. Journal of Biological Chemistry, 292(13), 5465–5475.

    Article  CAS  Google Scholar 

  16. Gao, L., Hidese, R., & Fujiwara, S. (2017). Function of a thermophilic Archaeal chaperonin is enhanced by electrostatic interactions with its targets. Journal of Bioscience and Bioengineering, 124(3), 283–288.

    Article  CAS  Google Scholar 

  17. Kumar, S., Tsai, C. J., Ma, B., & Nussinov, R. (1999). Why salt bridges in thermophilic proteins? Biophysical Journal, 76, A108.

    Google Scholar 

  18. Lim, J. K., Lee, H. S., Kim, Y. J., Bae, S. S., Jeon, J. H., Kang, S. G., & Lee, J. H. (2007). Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. Journal of Microbiology and Biotechnology, 17, 1242–1248.

    CAS  PubMed  Google Scholar 

  19. Baker, E. G., Bartlett, G. J., Crump, M. P., Sessions, R. B., Linden, N., Faul, C. F. J., & Woolfson, D. N. (2015). Local and macroscopic electrostatic interactions in single alpha-helices. Nature Chemical Biology, 11(9), 741.

    Article  CAS  Google Scholar 

  20. Coulther, T. A., Ondrechen, M. J., Ngu, L., & Beuning, P. J. (2018). Importance of electrostatic interactions in natural enzymes: What can we learn for protein engineering? Protein Science, 27, 159–160.

    Article  Google Scholar 

  21. Sivanandam, M., Saravanan, K., & Kumaradhas, P. (2018). Insights into intermolecular interactions, electrostatic properties and the stability of C646 in the binding pocket of p300 histone acetyltransferase enzyme: A combined molecular dynamics and charge density study. Journal of Biomolecular Structure & Dynamics, 36(12), 3246–3264.

    Article  CAS  Google Scholar 

  22. Ban, X. F., Liu, Y. T., Zhang, Y. Z., Gu, Z. B., Li, C. M., Cheng, L., Hong, Y., Dhoble, A. S., & Li, Z. F. (2018). Thermostabilization of a thermophilic 1,4-alpha-glucan branching enzyme through C-terminal truncation. International Journal of Biological Macromolecules, 107, 1510–1518.

    Article  CAS  Google Scholar 

  23. Li, Y., Ren, J. Y., Liu, J., Sun, L., Wang, Y. L., Liu, B. J., Li, C. N., & Li, Z. F. (2018). Modification by alpha-D-glucan branching enzyme lowers the in vitro digestibility of starch from different sources. International Journal of Biological Macromolecules, 107, 1758–1764.

    Article  CAS  Google Scholar 

  24. Li, C. M., Huang, M., Gu, Z. B., Hong, Y., Cheng, L., & Li, Z. F. (2014). Nanosilica sol leads to further increase in polyethylene glycol (PEG) 1000-enhanced thermostability of beta-cyclodextrin glycosyltransferase from Bacillus circulans. Journal of Agricultural and Food Chemistry, 62(13), 2919–2924.

    Article  CAS  Google Scholar 

  25. Li, W. F., Wang, J., Zhang, J., & Wang, W. (2015). Molecular simulations of metal-coupled protein folding. Current Opinion in Structural Biology, 30, 25–31.

    Article  Google Scholar 

Download references

Funding

This was financially supported by the National Natural Science Foundation of China (No. 31722040, 31771935), the Natural Science Foundation of Jiangsu Province (BK20180606), and the China Postdoctoral Science Foundation (No. 2018M632233).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaofeng Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, X., Li, C., Zhang, Y. et al. Importance of C-Terminal Extension in Thermophilic 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. Appl Biochem Biotechnol 190, 1010–1022 (2020). https://doi.org/10.1007/s12010-019-03150-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03150-7

Keywords

Navigation