Skip to main content
Log in

Pan-genome analysis of Riemerella anatipestifer reveals its genomic diversity and acquired antibiotic resistance associated with genomic islands

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Riemerella anatipestifer is a gram-negative bacterium that leads to severe contagious septicemia in ducks, turkeys, chickens, and wild waterfowl. Here, a pan-genome with 32 R. anatipestifer genomes is re-established, and the mathematical model is calculated to evaluate the expansion of R. anatipestifer genomes, which were determined to be open. Average nucleotide identity (ANI) and phylogenetic analysis preliminarily clarify intraspecies variation and distance. Comparative genomic analysis of R. anatipestifer found that horizontal gene transfer events, which provide an expressway for the recruitment of novel functionalities and facilitate genetic diversity in microbial genomes, play a key role in the process of acquiring and transmitting antibiotic-resistance genes in R. anatipestifer. Furthermore, a new antibiotic-resistance gene cluster was identified in the same loci in 14 genomes. The uneven distribution of virulence factors was also confirmed by our results. Our study suggests that the ability to acquire foreign genes (such as antibiotic-resistance genes) increases the adaptability of R. anatipestifer, and the virulence genes with little mobility are highly conserved in R. anatipestifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abby SS, Néron B, Ménager H, Touchon M, Rocha EPC (2014) MacSyFinder: a program to mine genomes for molecular systems with an application to CRISPR-Cas systems. PLoS One 9:e110726

    PubMed  PubMed Central  Google Scholar 

  • Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acuña LG, Cárdenas JP, Covarrubias PC, Haristoy JJ, Flores R, Nuñez H, Riadi G, Shmaryahu A, Valdés J, Dopson M, Rawlings DE, Banfield JF, Holmes DS, Quatrini R (2013) Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One 8:e78237

    PubMed  PubMed Central  Google Scholar 

  • Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K (2008) Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol 190:300–310

    CAS  PubMed  Google Scholar 

  • Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, Phillippy AM (2015) Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630

    CAS  PubMed  Google Scholar 

  • Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, Winsor GL, Brinkman FSL (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blum G, Ott M, Lischewski A, Ritter A, Imrich H, Tschäpe H, Hacker J (1994) Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun 62:606–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ (2016) Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci 113:E3801–E3809

    CAS  PubMed  Google Scholar 

  • Cha S-Y, Seo HS, Wei B, Kang M, Roh JH, Yoon RH, Kim JH, Jang HK (2015) Surveillance and characterization of Riemerella anatipestifer from wild birds in South Korea. J Wildl Dis 51:341–347

    CAS  PubMed  Google Scholar 

  • Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325–D328

    CAS  PubMed  Google Scholar 

  • Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J (2013) Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569

    CAS  PubMed  Google Scholar 

  • Chowdhury PR et al (2015) A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104: H4. PLoS One 10:e0115781

    PubMed Central  Google Scholar 

  • Chowdhury PR et al (2016) Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol 6:150175

    Google Scholar 

  • Dobrindt U, Hochhut B, Hentschel U, Hacker J (2004) Genomic islands in pathogenic and environmental microorganisms. Nat Rev Microbiol 2:414–424

    CAS  PubMed  Google Scholar 

  • Eddy S (2010) HMMER3: a new generation of sequence homology search software URL: http://hmmerjanelia Org

  • Espinoza RA, Silva-Valenzuela CA, Amaya FA, Urrutia ÍM, Contreras I, Santiviago CA (2017) Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages. Biol Res 50:5

    PubMed  PubMed Central  Google Scholar 

  • Frost LS, Leplae R, Summers AO, Toussaint A (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    CAS  PubMed  Google Scholar 

  • Galperin MY et al (2014) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269

    PubMed  PubMed Central  Google Scholar 

  • Gardner SN, Slezak T, Hall BG (2015) kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 31:2877–2878

    CAS  PubMed  Google Scholar 

  • Gibson MK, Forsberg KJ, Dantas G (2015) Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J 9:207–216

    CAS  PubMed  Google Scholar 

  • Gill SR, Fouts DE, Archer GL, Mongodin EF, DeBoy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM (2005) Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. Epidemiol Infect 27:113–159

    CAS  Google Scholar 

  • Hess C, Enichlmayr H, Jandreski-Cvetkovic D, Liebhart D, Bilic I, Hess M (2013) Riemerella anatipestifer outbreaks in commercial goose flocks and identification of isolates by MALDI-TOF mass spectrometry. Avian Pathol 42:151–156

    CAS  PubMed  Google Scholar 

  • Hsiao W, Wan I, Jones SJ, Brinkman FSL (2003) IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics 19:418–420

    CAS  PubMed  Google Scholar 

  • Hu Q et al (2017) Complete genome sequence of Riemerella anatipestifer serotype 10 strain HXb2. Genome announcements 5:e00278–e00217

    PubMed  PubMed Central  Google Scholar 

  • Hudson CM et al (2014) Islander: a database of precisely mapped genomic islands in tRNA and tmRNA genes. Nucleic Acids Res 43:D48–D53

    PubMed  PubMed Central  Google Scholar 

  • Jia B et al. (2016) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database Nucleic Acids Res:gkw1004

  • Kanehisa M et al (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabe T, Fujihira E, Yamaguchi A (2000) Molecular construction of a multidrug exporter system, AcrAB: molecular interaction between AcrA and AcrB, and cleavage of the N-terminal signal sequence of AcrA. J Biochem 128:195–200

    CAS  PubMed  Google Scholar 

  • Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  Google Scholar 

  • Langille MG et al (2008) Evaluation of genomic island predictors using a comparative genomics approach. BMC Bioinformatics 9:329

    PubMed  PubMed Central  Google Scholar 

  • Levings RS, Lightfoot D, Partridge SR, Hall RM, Djordjevic SP (2005) The genomic island SGI1, containing the multiple antibiotic resistance region of Salmonella enterica serovar Typhimurium DT104 or variants of it, is widely distributed in other S. enterica serovars. J Bacteriol 187:4401–4409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Zhao Y, Liu C, Chen Z, Zhou D (2014) Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 9:1071–1081

    PubMed  Google Scholar 

  • Li Y, Liu Y, Chew SC, Tay M, Salido MMS, Teo J, Lauro FM, Givskov M, Yang L (2015) Complete genome sequence and transcriptomic analysis of the novel pathogen Elizabethkingia anophelis in response to oxidative stress. Genome Biol Evol 7:1676–1685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay JA, Ruzin A, Ross HF, Kurepina N, Novick RP (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543

    CAS  PubMed  Google Scholar 

  • Liu M et al. (2017) Natural transformation and use of it to establish an easy knockout method in Riemerella anatipestifer Appl Environ Microbiol 00127-00117

  • Luo H-Y, Liu MF, Wang MS, Zhao XX, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Biville F, Zou YF, Jing B, Cheng AC, Zhu DK (2018) A novel resistance gene, lnu (H), conferring resistance to lincosamides in Riemerella anatipestifer CH-2. Int J Antimicrob Agents 51:136–139

    CAS  PubMed  Google Scholar 

  • McBride MJ, Nakane D (2015) Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol 28:72–77

    CAS  PubMed  Google Scholar 

  • McDaniel TK, Kaper JB (1997) A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol 23:399–407

    CAS  PubMed  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15:589–594

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766

    CAS  PubMed  Google Scholar 

  • Nakamura T et al (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 1:3

    Google Scholar 

  • Nieto PA, Pardo-Roa C, Salazar-Echegarai FJ, Tobar HE, Coronado-Arrázola I, Riedel CA, Kalergis AM, Bueno SM (2016) New insights about excisable pathogenicity islands in Salmonella and their contribution to virulence. Microbes Infect 18:302–309

    CAS  PubMed  Google Scholar 

  • Nikaido H (1998) Antibiotic resistance caused by gram-negative multidrug efflux pumps. Clin Infect Dis 27:S32–S41

    CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. nature 405:299–304

    CAS  PubMed  Google Scholar 

  • Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J (2015) Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips-Houlbracq M, Ricard JD, Foucrier A, Yoder-Himes D, Gaudry S, Bex J, Messika J, Margetis D, Chatel J, Dobrindt U, Denamur E, Roux D (2018) Pathophysiology of Escherichia coli pneumonia: respective contribution of pathogenicity islands to virulence. Int J Med Microbiol 308:290–296

    CAS  PubMed  Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106:19126–19131

    CAS  PubMed  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB, López-Pérez M (2016) Flexible genomic islands as drivers of genome evolution. Curr Opin Microbiol 31:154–160

    CAS  PubMed  Google Scholar 

  • Rutherford JC (2014) The emerging role of urease as a general microbial virulence factor. PLoS Pathog 10:e1004062

    PubMed  PubMed Central  Google Scholar 

  • Sanchez L et al (1997) The acrAB homolog of Haemophilus influenzae codes for a functional multidrug efflux pump. J Bacteriol 179:6855–6857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanfilippo CM, Hesje CK, Haas W, Morris TW (2011) Topoisomerase mutations that are associated with high-level resistance to earlier fluoroquinolones in Staphylococcus aureus have less effect on the antibacterial activity of besifloxacin. Chemotherapy 57:363–371

    CAS  PubMed  Google Scholar 

  • Scaria J, Ponnala L, Janvilisri T, Yan W, Mueller LA, Chang YF (2010) Analysis of ultra low genome conservation in Clostridium difficile. PLoS One 5:e15147

    PubMed  PubMed Central  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    CAS  PubMed  Google Scholar 

  • Skippington E, Ragan MA (2011) Lateral genetic transfer and the construction of genetic exchange communities. FEMS Microbiol Rev 35:707–735

    CAS  PubMed  Google Scholar 

  • Song XH (2016) Isolation and identification of Riemerella anatipestifer and analysis of multidrug-resistant gene clusters in strain RCAD0122. Master’s thesis, Sichuan Agricultural University

  • Song X-H et al (2016) Genome sequence of Riemerella anatipestifer strain RCAD0122, a multidrug-resistant isolate from ducks. Genome Announc 4:e00332–e00316

    PubMed  PubMed Central  Google Scholar 

  • Swayne DE et al. (2013a) Diseases of poultry, 13th edition. In: Diseases of poultry. p 823

  • Swayne DE et al. (2013b) Diseases of poultry, 13th edition. In: Diseases of poultry. p 825

  • Swenson DL, Bukanov NO, Berg DE, Welch RA (1996) Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect Immun 64:3736–3743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    CAS  PubMed  Google Scholar 

  • Treangen TJ, Rocha EP (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLoS Genet 7:e1001284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van den Bogaard A et al (2001) Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 47:763–771

    PubMed  Google Scholar 

  • Van den Bogaard A et al (2002) Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 49:497–505

    PubMed  Google Scholar 

  • Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke W, Surovcik K, Meinicke P, Merkl R (2006) Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7:142

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhu D, Wang M, Cheng A, Jia R, Zhou Y, Chen Z, Luo Q, Liu F, Wang Y, Chen XY (2012) Complete genome sequence of Riemerella anatipestifer reference strain. J Bacteriol 194:3270–3271. https://doi.org/10.1128/JB.00366-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu W, Zhu D, Yang LF, Liu MF, Yin S, Wang MS, Jia RY, Chen S, Sun KF, Cheng A, Chen X (2014) Comparative genomics of Riemerella anatipestifer reveals genetic diversity. BMC Genomics 15:479

    PubMed  PubMed Central  Google Scholar 

  • Wang X et al. (2015) Whole-genome sequence analysis and genome-wide virulence gene identification of Riemerella anatipestifer strain Yb2 Applied and environmental microbiology:AEM. 00828-00815

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Liu W, Sun M, Song S, Cai J, Hu S (2011) Complete genome sequence of the pathogenic bacterium Riemerella anatipestifer strain RA-GD. J Bacteriol 193:2896–2897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan J et al (2013) Genome sequence of avirulent Riemerella anatipestifer strain RA-SG. Genome Announc 1:e00218–e00212

    PubMed Central  Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T et al (2015) Genome sequence of avirulent Riemerella anatipestifer strain RA-JLLY. Genome Announc 3:e00895–e00815

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CRH (1998) Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273:12466–12475

    CAS  PubMed  Google Scholar 

  • Zhou C et al (2006) MvirDB—a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35:D391–D394

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Peng X, Xiao Y, Wang X, Guo Z, Zhu L, Liu M, Jin H, Bi D, Li Z, Sun M (2011) Genome sequence of poultry pathogen Riemerella anatipestifer strain RA-YM. J Bacteriol 193:1284–1285

    CAS  PubMed  Google Scholar 

  • Zhu D-K, Yang XQ, He Y, Zhou WS, Song XH, Wang JB, Zhang Y, Liu MF, Wang MS, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC (2016) Comparative genomic analysis identifies structural features of CRISPR-Cas systems in Riemerella anatipestifer. BMC Genomics 17:689

    PubMed  PubMed Central  Google Scholar 

  • Zhu D-K, Luo HY, Liu MF, Zhao XX, Jia RY, Chen S, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC, Wang MS (2018) Various profiles of tet genes addition to tet (X) in Riemerella anatipestifer isolates From Ducks in China. Front Microbiol 9:585

    PubMed  PubMed Central  Google Scholar 

  • Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China [Grant No. 2017YFD050080]; China Agricultural Research System [Grant No. CARS-42-17]; International S&T Cooperation Program of Sichuan Province [Grant No. 2017HH0026]; Science and Technology Innovation Program of Guizhou Academy of Agricultural Science [Grant No. (2017)03]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchun Cheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 329 kb)

ESM 2

(DOCX 2188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Yang, Z., Xu, J. et al. Pan-genome analysis of Riemerella anatipestifer reveals its genomic diversity and acquired antibiotic resistance associated with genomic islands. Funct Integr Genomics 20, 307–320 (2020). https://doi.org/10.1007/s10142-019-00715-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00715-x

Keywords

Navigation