Skip to main content
Log in

Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering

  • Bioengineering and Enabling Technologies
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Freeze-casting is a popular method to produce biomaterial scaffolds with highly porous structures. The pore structure of freeze-cast biomaterial scaffolds is influenced by processing parameters but has mostly been controlled experimentally. A mathematical model integrating Computational Fluid Dynamics with Population Balance Model was developed to predict average pore size (APS) of 3D porous chitosan-alginate scaffolds and to assess the influence of the geometrical parameters of mold on scaffold pore structure. The model predicted the crystallization pattern and APS for scaffolds cast in different diameter molds and filled to different heights. The predictions demonstrated that the temperature gradient and solidification pattern affect ice crystal nucleation and growth, subsequently influencing APS homogeneity. The predicted APS compared favorably with APS measurements from a corresponding experimental dataset, validating the model. Sensitivity analysis was performed to assess the response of the APS to the three geometrical parameters of the mold: well radius; solution fill height; and spacing between wells. The pore size was most sensitive to the distance between the wells and least sensitive to solution height. This validated model demonstrates a method for optimizing the APS of freeze-cast biomaterial scaffolds that could be applied to other compositions or applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bose, S., M. Roy, and A. Bandyopadhyay. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30:546–554, 2012.

    Article  CAS  Google Scholar 

  2. Canonsburg, T. D. Population Balance Model Theory. ANSYS Fluent User Manual. Canonsburg: ANSYS, 2009.

    Google Scholar 

  3. Costa, C. B. B., M. R. W. Maciel, and R. M. Filho. Considerations on the crystallization modeling: population balance solution. Comput. Chem. Eng. 31:206–218, 2007.

    Article  CAS  Google Scholar 

  4. Deville, S., E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, and C. Guizard. In situ X-ray radiography and tomography observations of the solidification of aqueous alumina particle suspensions-part I: initial instants. J. Am. Ceram. Soc. 92:2489–2496, 2009.

    Article  CAS  Google Scholar 

  5. Enrique, D., P. Jos, A. Sobral, and C. Norte. The effect of processing parameters and solid concentration on the microstructure and pore architecture of gelatin-chitosan scaffolds produced by freeze-drying. Mater. Res. 19:839–845, 2016.

    Article  Google Scholar 

  6. Florczyk, S. J., F. M. Kievit, K. Wang, A. E. Erickson, R. G. Ellenbogen, and M. Zhang. 3D porous chitosan–alginate scaffolds promote proliferation and enrichment of cancer stem-like cells. J. Mater. Chem. B 4:6326–6334, 2016.

    Article  CAS  Google Scholar 

  7. Florczyk, S. J., D.-J. J. Kim, D. L. Wood, and M. Zhang. Influence of processing parameters on pore structure of 3D porous chitosan-alginate polyelectrolyte complex scaffolds. J. Biomed. Mater. Res. Part A 98A:614–620, 2011.

    Article  CAS  Google Scholar 

  8. Florczyk, S. J., M. Leung, Z. Li, J. I. Huang, R. A. Hopper, and M. Zhang. Evaluation of three-dimensional porous chitosan-alginate scaffolds in rat calvarial defects for bone regeneration applications. J. Biomed. Mater. Res. Part A 101:2974–2983, 2013.

    Article  Google Scholar 

  9. Florczyk, S. J., G. Liu, F. M. Kievit, A. M. Lewis, J. D. Wu, and M. Zhang. 3D porous chitosan-alginate scaffolds: a new matrix for studying prostate cancer cell-lymphocyte interactions in vitro. Adv. Healthc. Mater. 1:590–599, 2012.

    Article  CAS  Google Scholar 

  10. Hottot, A., S. Vessot, and J. Andrieu. Freeze drying of pharmaceuticals in vials: influence of freezing protocol and sample configuration on ice morphology and freeze-dried cake texture. Chem. Eng. Process. Process Intensif. 46:666–674, 2007.

    Article  CAS  Google Scholar 

  11. Hsu, S., S. W. Whu, S.-C. Hsieh, C.-L. Tsai, D. C. Chen, and T.-S. Tan. Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif. Organs 28:693–703, 2004.

    Article  CAS  Google Scholar 

  12. Husmann, A., K. Pawelec, C. Burdett, S. Best, and R. Cameron. Numerical simulations to determine the influence of mould design on ice-templated scaffold structures. J. Biomed. Eng. Inform. 1:47, 2015.

    Article  Google Scholar 

  13. Ikada, Y. Tissue Engineering : Fundamentals and Applications. Cambridge/Amsterdam: Academic Press/Elsevier, p. 469, 2006.

    Google Scholar 

  14. Khalifa, A. Natural convective heat transfer coefficient ? A review I. Isolated vertical and horizontal surfaces. Energy Convers. Manag. 42:491–504, 2001.

    Article  Google Scholar 

  15. Kievit, F. M., S. J. Florczyk, M. C. Leung, K. Wang, J. D. Wu, J. R. Silber, R. G. Ellenbogen, J. S. H. Lee, and M. Zhang. Proliferation and enrichment of CD133 + glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds. Biomaterials 35:9137–9143, 2014.

    Article  CAS  Google Scholar 

  16. Langford, A., B. Bhatnagar, R. Walters, S. Tchessalov, and S. Ohtake. Drying technologies for biopharmaceutical applications: recent developments and future direction. Dry. Technol. 36:677–684, 2018.

    Article  CAS  Google Scholar 

  17. Li, Z., M. Leung, R. Hopper, R. Ellenbogen, and M. Zhang. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31:404–412, 2010.

    Article  CAS  Google Scholar 

  18. Lian, G., S. Moore, and L. Heeney. Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer. Chem. Eng. Sci. 61:7819–7826, 2006.

    Article  CAS  Google Scholar 

  19. Lucke, M., I. Koudous, M. Sixt, M. J. Huter, and J. Strube. Integrating crystallization with experimental model parameter determination and modeling into conceptual process design for the purification of complex feed mixtures. Chem. Eng. Res. Des. 133:264–280, 2018.

    Article  CAS  Google Scholar 

  20. Mitchell, G. R., and A. Tojeira. Role of anisotropy in tissue engineering. Procedia Eng. 59:117–125, 2013.

    Article  Google Scholar 

  21. Morris, G., G. Power, S. Ferguson, M. Barrett, G. Hou, and B. Glennon. Estimation of nucleation and growth kinetics of benzoic acid by population balance modeling of a continuous cooling mixed suspension, mixed product removal crystallizer. Org. Process Res. Dev. 19:1891–1902, 2015.

    Article  CAS  Google Scholar 

  22. Mueller, S. M., S. Shortkroff, T. O. Schneider, H. A. Breinan, V. Yannas, and M. Spector. Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro. Biomaterials 20:701–709, 1999.

    Article  CAS  Google Scholar 

  23. Muzzarelli, R., M. Mehtedi, M. Mattioli-Belmonte, R. A. A. Muzzarelli, M. El Mehtedi, and M. Mattioli-Belmonte. Emerging biomedical applications of nano-chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar. Drugs 12:5468–5502, 2014.

    Article  CAS  Google Scholar 

  24. Muzzio, C. R., and N. G. Dini. Simulation of freezing step in vial lyophilization using finite element method. Comput. Chem. Eng. 35:2274–2283, 2011.

    Article  CAS  Google Scholar 

  25. Parniakov, O., O. Bals, N. Lebovka, and E. Vorobiev. Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innov. Food Sci. Emerg. Technol. 35:52–57, 2016.

    Article  Google Scholar 

  26. Pawelec, K. M., A. Husmann, S. M. Best, and R. E. Cameron. Ice-templated structures for biomedical tissue repair: from physics to final scaffolds. Appl. Phys. Rev. 1:021301, 2014.

    Article  Google Scholar 

  27. Porter, M. M., J. Mckittrick, and M. A. Meyers. Biomimetic materials by freeze casting. JOM 65:720–727, 2013.

    Article  CAS  Google Scholar 

  28. Ramšak, M., J. Ravnik, M. Zadravec, M. Hriberšek, and J. Iljaž. Freeze-drying modeling of vial using BEM. Eng. Anal. Bound. Elem. 77:145–156, 2017.

    Article  Google Scholar 

  29. Sheehan, P., and A. I. Liapis. Modeling of the primary and secondary drying stages of the freeze drying of pharmaceutical products in vials: numerical results obtained from the solution of a dynamic and spatially multi-dimensional lyophilization model for different operational policies. Biotechnol. Bioeng. 60:712–728, 1998.

    Article  CAS  Google Scholar 

  30. Spillar, V., D. Dolejs, V. Clav, and S. Pillar. Calculation of time-dependent nucleation and growth rates from quantitative textural data: inversion of crystal size distribution. J. Petrol. 54:913–931, 2013.

    Article  CAS  Google Scholar 

  31. Szilágyi, B., and Z. K. Nagy. Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm. Comput. Chem. Eng. 91:167–181, 2016.

    Article  Google Scholar 

  32. Tang (Charlie), X., and M. J. Pikal. Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm. Res. 21:191–200, 2004.

    Article  Google Scholar 

  33. Venkatesan, J., I. Bhatnagar, and S.-K. Kim. Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar. Drugs 12:300–316, 2014.

    Article  CAS  Google Scholar 

  34. Venkatesan, J., I. Bhatnagar, P. Manivasagan, K.-H. Kang, and S.-K. Kim. Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72:269–281, 2015.

    Article  CAS  Google Scholar 

  35. Xia, Z., X. Yu, X. Jiang, H. D. Brody, D. W. Rowe, and M. Wei. Fabrication and characterization of biomimetic collagen–apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater. 9:7308–7319, 2013.

    Article  CAS  Google Scholar 

  36. Xu, K., K. Ganapathy, T. Andl, Z. Wang, J. A. Copland, R. Chakrabarti, and S. J. Florczyk. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 217:119311, 2019.

    Article  CAS  Google Scholar 

  37. Yamamoto, T. Computer modeling of polymer crystallization—toward computer-assisted materials’ design. Polymer (Guildf). 50:1975–1985, 2009.

    Article  CAS  Google Scholar 

  38. Yin, K., P. Divakar, J. Hong, K. L. Moodie, J. M. Rosen, C. A. Sundback, M. K. Matthew, and U. G. K. Wegst. Freeze-cast porous chitosan conduit for peripheral nerve repair. MRS Adv. 3:1677–1683, 2018.

    Article  CAS  Google Scholar 

  39. Zeltinger, J., J. K. Sherwood, D. A. Graham, R. Müeller, and L. G. Griffith. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng. 7:557–572, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The computation was performed with courtesy license from ANSYS. The production of the experimental dataset was supported by UCF start-up funding (SJF). The authors thank Dana Rowley and Kathryn Ellett for assistance with scaffold preparation and pore size measurements. The authors would like to acknowledge the use of JEOL JSM-6480 SEM at the Materials Characterization Facility (MCF), administered by Advanced Materials Processing and Analysis Center (AMPAC) of University of Central Florida.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olusegun Ilegbusi or Stephen Florczyk.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhollahi, A., Ilegbusi, O., Florczyk, S. et al. Effect of Mold Geometry on Pore Size in Freeze-Cast Chitosan-Alginate Scaffolds for Tissue Engineering. Ann Biomed Eng 48, 1090–1102 (2020). https://doi.org/10.1007/s10439-019-02381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02381-3

Keywords

Navigation