Skip to main content

Advertisement

Log in

Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Accumulation of pathological tau is the hallmark of Alzheimer’s disease and other tauopathies and is closely correlated with cognitive decline. Clearance of pathological tau from the brain is a major therapeutic strategy for tauopathies. The physiological capacity of the periphery to clear brain-derived tau and its therapeutic potential remain largely unknown. Here, we found that cisterna magna injected 131I-labelled synthetic tau dynamically effluxed from the brain and was mainly cleared from the kidney, blood, and liver in mice; we also found that plasma tau levels in inferior vena cava were lower than those in femoral artery in humans. These findings suggest that tau proteins can efflux out of the brain and be cleared in the periphery under physiological conditions. Next, we showed that lowering blood tau levels via peritoneal dialysis could reduce interstitial fluid (ISF) tau levels in the brain, and tau levels in the blood and ISF were dynamically correlated; furthermore, tau efflux from the brain was accelerated after the addition of another set of peripheral system in a parabiosis model. Finally, we established parabiosis mouse models using tau transgenic mice and their wild-type littermates and found that brain tau levels and related pathologies in parabiotic transgenic mice were significantly reduced after parabiosis, suggesting that chronic enhancement of peripheral tau clearance alleviates pathological tau accumulation and neurodegeneration in the brain. Our study provides the first evidence of physiological clearance of brain-derived pathological tau in the periphery, suggesting that enhancing peripheral tau clearance is a potential therapeutic strategy for tauopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barron M, Gartlon J, Dawson LA, Atkinson PJ, Pardon MC (2017) A state of delirium: deciphering the effect of inflammation on tau pathology in Alzheimer’s disease. Exp Gerontol 94:103–107. https://doi.org/10.1016/j.exger.2016.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793. https://doi.org/10.1038/nrd2959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bu XL, Xiang Y, Jin WS, Wang J, Shen LL, Huang ZL, Zhang K, Liu YH, Zeng F, Liu JH et al (2017) Blood-derived amyloid-beta protein induces Alzheimer’s disease pathologies. Mol Psychiatry. https://doi.org/10.1038/mp.2017.204

    Article  PubMed Central  PubMed  Google Scholar 

  4. Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Lasagna-Reeves CA, Gerson JE, Singh G, Estes DM, Barrett AD, Dineley KT, Jackson GR et al (2014) Passive immunization with Tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci 34:4260–4272. https://doi.org/10.1523/JNEUROSCI.3192-13.2014

    Article  PubMed  CAS  Google Scholar 

  5. Chiotis K, Saint-Aubert L, Rodriguez-Vieitez E, Leuzy A, Almkvist O, Savitcheva I, Jonasson M, Lubberink M, Wall A, Antoni G et al (2017) Longitudinal changes of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Mol Psychiatry. https://doi.org/10.1038/mp.2017.108

    Article  PubMed  Google Scholar 

  6. Clavaguera F, Hench J, Lavenir I, Schweighauser G, Frank S, Goedert M, Tolnay M (2014) Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol 127:299–301. https://doi.org/10.1007/s00401-013-1231-5

    Article  PubMed  Google Scholar 

  7. Congdon EE, Sigurdsson EM (2018) Tau-targeting therapies for Alzheimer disease. Nat Rev Neurol. https://doi.org/10.1038/s41582-018-0013-z

    Article  PubMed  Google Scholar 

  8. Dage JL, Wennberg AMV, Airey DC, Hagen CE, Knopman DS, Machulda MM, Roberts RO, Jack CR Jr, Petersen RC, Mielke MM (2016) Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer’s Dement J Alzheimer’s Assoc 12:1226–1234. https://doi.org/10.1016/j.jalz.2016.06.001

    Article  Google Scholar 

  9. De Marco G, Lupino E, Calvo A, Moglia C, Buccinna B, Grifoni S, Ramondetti C, Lomartire A, Rinaudo MT, Piccinini M et al (2011) Cytoplasmic accumulation of TDP-43 in circulating lymphomonocytes of ALS patients with and without TARDBP mutations. Acta Neuropathol 121:611–622. https://doi.org/10.1007/s00401-010-0786-7

    Article  PubMed  CAS  Google Scholar 

  10. Deters N, Ittner LM, Gotz J (2008) Divergent phosphorylation pattern of tau in P301L tau transgenic mice. Eur J Neurosci 28:137–147. https://doi.org/10.1111/j.1460-9568.2008.06318.x

    Article  PubMed  Google Scholar 

  11. Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, Snowden JS, Allsop D, Mann DM (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–146. https://doi.org/10.1007/s00401-008-0389-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guo T, Noble W, Hanger DP (2017) Roles of tau protein in health and disease. Acta Neuropathol 133:665–704. https://doi.org/10.1007/s00401-017-1707-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gyoneva S, Kim D, Katsumoto A, Kokiko-Cochran ON, Lamb BT, Ransohoff RM (2015) Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury. J Neuroinflamm 12:228. https://doi.org/10.1186/s12974-015-0443-0

    Article  CAS  Google Scholar 

  14. Hu X, Paik PK, Chen J, Yarilina A, Kockeritz L, Lu TT, Woodgett JR, Ivashkiv LB (2006) IFN-gamma suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24:563–574. https://doi.org/10.1016/j.immuni.2006.02.014

    Article  PubMed  CAS  Google Scholar 

  15. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33:1024–1037. https://doi.org/10.1523/JNEUROSCI.2642-12.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Iba M, McBride JD, Guo JL, Zhang B, Trojanowski JQ, Lee VM (2015) Tau pathology spread in PS19 tau transgenic mice following locus coeruleus (LC) injections of synthetic tau fibrils is determined by the LC’s afferent and efferent connections. Acta Neuropathol 130:349–362. https://doi.org/10.1007/s00401-015-1458-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Iliff JJ, Chen MJ, Plog BA, Zeppenfeld DM, Soltero M, Yang L, Singh I, Deane R, Nedergaard M (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12:15–27. https://doi.org/10.1038/nrneurol.2015.225

    Article  PubMed  CAS  Google Scholar 

  19. Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S, LaFerla FM, Callahan LM, Federoff HJ, Bowers WJ (2008) Chronic neuron-specific tumor necrosis factor-alpha expression enhances the local inflammatory environment ultimately leading to neuronal death in 3xTg-AD mice. Am J Pathol 173:1768–1782. https://doi.org/10.2353/ajpath.2008.080528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Jiao SS, Shen LL, Zhu C, Bu XL, Liu YH, Liu CH, Yao XQ, Zhang LL, Zhou HD, Walker DG et al (2016) Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry 6:e907. https://doi.org/10.1038/tp.2016.186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jin WS, Shen LL, Bu XL, Zhang WW, Chen SH, Huang ZL, Xiong JX, Gao CY, Dong Z, He YN et al (2017) Peritoneal dialysis reduces amyloid-beta plasma levels in humans and attenuates Alzheimer-associated phenotypes in an APP/PS1 mouse model. Acta Neuropathol 134:207–220. https://doi.org/10.1007/s00401-017-1721-y

    Article  PubMed  CAS  Google Scholar 

  22. Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, Weigand SD, Boeve BF, Kantarci K, Petrucelli L et al (2017) Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol 133:705–715. https://doi.org/10.1007/s00401-017-1681-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Khanna MR, Kovalevich J, Lee VM, Trojanowski JQ, Brunden KR (2016) Therapeutic strategies for the treatment of tauopathies: hopes and challenges. Alzheimer’s Dement J Alzheimer’s Assoc 12:1051–1065. https://doi.org/10.1016/j.jalz.2016.06.006

    Article  Google Scholar 

  24. Le W, Dong J, Li S, Korczyn AD (2017) Can biomarkers help the early diagnosis of Parkinson’s disease? Neurosci Bull 33:535–542. https://doi.org/10.1007/s12264-017-0174-6

    Article  PubMed  CAS  Google Scholar 

  25. Lewis J, Dickson DW (2016) Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 131:27–48. https://doi.org/10.1007/s00401-015-1507-z

    Article  PubMed  CAS  Google Scholar 

  26. Li Y, Liu L, Barger SW, Griffin WS (2003) Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23:1605–1611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspect Med 2:a006247. https://doi.org/10.1101/cshperspect.a006247

    Article  CAS  Google Scholar 

  29. Orr ME, Sullivan AC, Frost B (2017) A brief overview of tauopathy: causes, consequences, and therapeutic strategies. Trends Pharmacol Sci 38:637–648. https://doi.org/10.1016/j.tips.2017.03.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Park SH, Park-Min KH, Chen J, Hu X, Ivashkiv LB (2011) Tumor necrosis factor induces GSK3 kinase-mediated cross-tolerance to endotoxin in macrophages. Nat Immunol 12:607–615. https://doi.org/10.1038/ni.2043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pascual G, Wadia JS, Zhu X, Keogh E, Kukrer B, van Ameijde J, Inganas H, Siregar B, Perdok G, Diefenbach O et al (2017) Immunological memory to hyperphosphorylated tau in asymptomatic individuals. Acta Neuropathol 133:767–783. https://doi.org/10.1007/s00401-017-1705-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Gotz J (2017) Amyloid-beta and tau complexity—towards improved biomarkers and targeted therapies. Nat Rev Neurol. https://doi.org/10.1038/nrneurol.2017.162

    Article  PubMed  Google Scholar 

  33. Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM (2012) Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J Biol Chem 287:20522–20533. https://doi.org/10.1074/jbc.M111.323279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Shen LL, Manucat-Tan NB, Gao SH, Li WW, Zeng F, Zhu C, Wang J, Bu XL, Liu YH, Gao CY et al (2018) The ProNGF/p75NTR pathway induces tau pathology and is a therapeutic target for FTLD-tau. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0071-z

    Article  PubMed  Google Scholar 

  35. Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, Yang L, Stewart T, Zheng D, Aro P et al (2016) CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 12:1125–1131. https://doi.org/10.1016/j.jalz.2016.04.003

    Article  Google Scholar 

  36. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C et al (2014) Plasma exosomal alpha-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650. https://doi.org/10.1007/s00401-014-1314-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV et al (2015) Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 11:457–470. https://doi.org/10.1038/nrneurol.2015.119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke L (2015) Tau reduction prevents Abeta-induced axonal transport deficits by blocking activation of GSK3beta. J Cell Biol 209:419–433. https://doi.org/10.1083/jcb.201407065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang J, Gu BJ, Masters CL, Wang YJ (2017) A systemic view of Alzheimer disease—insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13:612–623. https://doi.org/10.1038/nrneurol.2017.111

    Article  PubMed  CAS  Google Scholar 

  40. Weiss A, Trager U, Wild EJ, Grueninger S, Farmer R, Landles C, Scahill RI, Lahiri N, Haider S, Macdonald D et al (2012) Mutant huntingtin fragmentation in immune cells tracks Huntington’s disease progression. J Clin Investig 122:3731–3736. https://doi.org/10.1172/JCI64565

    Article  PubMed  CAS  Google Scholar 

  41. Xiang Y, Bu XL, Liu YH, Zhu C, Shen LL, Jiao SS, Zhu XY, Giunta B, Tan J, Song WH et al (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130:487–499. https://doi.org/10.1007/s00401-015-1477-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Xin SH, Tan L, Cao X, Yu JT, Tan L (2018) Clearance of amyloid beta and tau in Alzheimer’s disease: from mechanisms to therapy. Neurotox Res. https://doi.org/10.1007/s12640-018-9895-1

    Article  PubMed  Google Scholar 

  43. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK, Hochgrafe K, Mandelkow EM et al (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211:387–393. https://doi.org/10.1084/jem.20131685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yanamandra K, Kfoury N, Jiang H, Mahan Thomas E, Ma S, Maloney Susan E, Wozniak David F, Diamond Marc I, Holtzman David M (2013) Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80:402–414. https://doi.org/10.1016/j.neuron.2013.07.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yanamandra K, Patel TK, Jiang H, Schindler S, Ulrich JD, Boxer AL, Miller BL, Kerwin DR, Gallardo G, Stewart F et al (2017) Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aal2029

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yao XQ, Jiao SS, Saadipour K, Zeng F, Wang QH, Zhu C, Shen LL, Zeng GH, Liang CR, Wang J et al (2015) p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol Psychiatry 20:1301–1310. https://doi.org/10.1038/mp.2015.49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zou H, Wen C, Peng Z, Shao Y, Hu L, Li S, Li C, Zhou HH (2018) P4HB and PDIA3 are associated with tumor progression and therapeutic outcome of diffuse gliomas. Oncol Rep 39:501–510. https://doi.org/10.3892/or.2017.6134

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (NSFC) through Grants 81625007, 91749206, and 81600949. The authors would like to thank the following for aid in radiolabelling of 131I-tau: Professor Ding-De Huang from Department of Nuclear Medicine, Southwest Hospital of Third Military Medical University, and Professor Zhi-Ping Peng from Department of Radiological Medicine, College of Basic Medical, Chongqing Medical University. The authors would also like to thank professor Shi-Fei Tong from The Third Affiliated Hospital of Chongqing Medical University for collecting blood samples from patients.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Hui Liu or Yan-Jiang Wang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 696 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Jin, WS., Bu, XL. et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathol 136, 525–536 (2018). https://doi.org/10.1007/s00401-018-1891-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-018-1891-2

Keywords

Navigation