Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Paeonol Derivatives and Pharmacological Activities: A Review of Recent Progress

Author(s): Jilei Wang, Guiying Wu, Haiping Chu, Zhongyu Wu* and Jingyong Sun*

Volume 20, Issue 6, 2020

Page: [466 - 482] Pages: 17

DOI: 10.2174/1389557519666191015204223

Price: $65

Abstract

Paeonol, 2-hydroxy-4-methoxy acetophenone, is one of the main active ingredients of traditional Chinese medicine such as Cynanchum paniculatum, Paeonia suffruticosa Andr and Paeonia lactiflora Pall. Modern medical research has shown that paeonol has a wide range of pharmacological activities. In recent years, a large number of studies have been carried out on the structure modification of paeonol and the mechanism of action of paeonol derivatives has been studied. Some paeonol derivatives exhibit good pharmacological activities in terms of antibacterial, anti-inflammatory, antipyretic analgesic, antioxidant and other pharmacological effects. Herein, the research progress on paeonol derivatives and their pharmacological activities were systematically reviewed.

Keywords: Paeonol derivatives, pharmacological activities, anti-inflammatory, antitumor, antibacterial, cardiovascular, antioxidant, anti-enzyme.

Graphical Abstract
[1]
Tsai, C.Y.; Kapoor, M.; Huang, Y.P.; Lin, H.H.; Liang, Y.C.; Lin, Y.L.; Huang, S.C.; Liao, W.N.; Chen, J.K.; Huang, J.S.; Hsu, M.H. Synthesis and evaluation of aminothiazole-paeonol derivatives as potential anticancer agents. Molecules, 2016, 21(2), 145.
[http://dx.doi.org/10.3390/molecules21020145] [PMID: 26821004]
[2]
Fu, P.K.; Wu, C.L.; Tsai, T.H.; Hsieh, C.L. Anti-inflammatory and anticoagulative effects of paeonol on LPS-induced acute lung injury in rats. Evid. Based Complement. Alternat. Med., 2012, 2012(6), 837513
[http://dx.doi.org/10.1155/2012/837513] [PMID: 22454687]
[3]
Chou, T.C. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. Br. J. Pharmacol., 2003, 139(6), 1146-1152.
[http://dx.doi.org/10.1038/sj.bjp.0705360] [PMID: 12871833]
[4]
Chen, B.; Ning, M.; Yang, G. Effect of paeonol on antioxidant and immune regulatory activity in hepatocellular carcinoma rats. Molecules, 2012, 17(4), 4672-4683.
[http://dx.doi.org/10.3390/molecules17044672] [PMID: 22522397]
[5]
Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; Ho, Y.Y.; Lau, C.B.S. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine, 2007, 14(11), 778-784.
[http://dx.doi.org/10.1016/j.phymed.2007.01.007] [PMID: 17298878]
[6]
Yin, J.; Wu, N.; Zeng, F.; Cheng, C.; Kang, K.; Yang, H. Paeonol induces apoptosis in human ovarian cancer cells. Acta Histochem., 2013, 115(8), 835-839.
[http://dx.doi.org/10.1016/j.acthis.2013.04.004] [PMID: 23768958]
[7]
Zhao, J.F.; Jim Leu, S.J.; Shyue, S.K.; Su, K.H.; Wei, J.; Lee, T.S. Novel effect of paeonol on the formation of foam cells: promotion of LXRα-ABCA1-dependent cholesterol efflux in macrophages. Am. J. Chin. Med., 2013, 41(5), 1079-1096.
[http://dx.doi.org/10.1142/S0192415X13500730] [PMID: 24117070]
[8]
Su, S.Y.; Cheng, C.Y.; Tsai, T.H.; Hsieh, C.L. Paeonol protects memory after ischemic stroke via inhibiting β-secretase and apoptosis. Evid-Based Compl. Evid. Based Complement. Alternat. Med., 2012., 2012932823
[http://dx.doi.org/10.1155/2012/932823] [PMID: 22474531]
[9]
Shi, L.; Fan, P.S.; Fang, J.X.; Han, Z.X. [Inhibitory effects of paeonol on experimental atherosclerosis and platelet aggregation of rabbit Zhongguo Yao Li Xue Bao, 1988, 9(6), 555-558.
[PMID: 2855689]
[10]
Dai, M.; Zhi, X.; Peng, D.; Liu, Q. [Inhibitory effect of paeonol on experimental atherosclerosis in quails Zhongguo Zhongyao Zazhi, 1999, 24(8), 488-490, 512.
[PMID: 12205869]
[11]
Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 2005, 352(16), 1685-1695.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[12]
Zhang, H.Y.; Ge, N.; Zhang, Z.Y. Theoretical elucidation of activity differences of five phenolic antioxidants. Zhongguo Yao Li Xue Bao, 1999, 20(4), 363-366.
[PMID: 10452126]
[13]
Hirai, A.; Terano, T.; Hamazaki, T.; Sajiki, J.; Saito, H.; Tahara, K.; Tamura, Y.; Kumagai, A. Studies on the mechanism of antiaggregatory effect of Moutan Cortex. Thromb. Res., 1983, 31(1), 29-40.
[http://dx.doi.org/10.1016/0049-3848(83)90005-1] [PMID: 6412397]
[14]
Xie, Y.; Zhou, H.; Wong, Y.F.; Xu, H.X.; Jiang, Z.H.; Liu, L. Study on the pharmacokinetics and metabolism of paeonol in rats treated with pure paeonol and an herbal preparation containing paeonol by using HPLC-DAD-MS method. J. Pharm. Biomed. Anal., 2008, 46(4), 748-756.
[http://dx.doi.org/10.1016/j.jpba.2007.11.046] [PMID: 18215489]
[15]
Jin, X.; Wang, J.; Xia, Z.M.; Shang, C.H.; Chao, Q.L.; Liu, Y.R.; Fan, H.Y.; Chen, D.Q.; Qiu, F.; Zhao, F. Anti-inflammatory and Anti-oxidative Activities of Paeonol and Its Metabolites Through Blocking MAPK/ERK/p38 Signaling Pathway. Inflammation, 2016, 39(1), 434-446.
[http://dx.doi.org/10.1007/s10753-015-0265-3] [PMID: 26433578]
[16]
Qin, D.D.; Yang, Z.Y.; Qi, G.F. Synthesis, fluorescence study and biological evaluation of three Zn(II) complexes with Paeonol Schiff base. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2009, 74(2), 415-420.
[http://dx.doi.org/10.1016/j.saa.2009.06.037] [PMID: 19632146]
[17]
Lai, P.H.; Tian, G.H.; Ji, X.H.; Liu, C.F.; Guo, Y.M. Synthesis and antimicrobial activity of novel 2′-hydroxy-4′-methoxy-3-nitrochalcone. Chin. J. Synth. Chem., 2010, 18(4), 465-467.
[18]
Qin, D.D.; Yang, Z.Y.; Qi, G.F.; Li, T.R. Crystal structure and biological activities of water-soluble nickel (II) and copper (II) complexes of a Schiff-base derived from paeonol. Transit. Metal. Chem., 2009, 34(5), 499-505.
[http://dx.doi.org/10.1007/s11243-009-9222-z]
[19]
Wu, X.; Wu, G.; Zhang, W.; Gu, G.; Sha, S.; Wang, X. [Experiment on extraction, sulfonate of paeonol and its antibiotic effect on plant pathogen] Zhong Yao Cai, 2003, 26(11), 778-780.
[PMID: 14989057]
[20]
Qin, D.D.; Yang, Z.Y.; Zhang, F.H.; Du, B.; Wang, P.; Li, T.R. Evaluation of the antioxidant, DNA interaction and tumor cell cytotoxicity activities of copper(II) complexes with paeonol schiff-base. Inorg. Chem. Commun., 2010, 13(6), 727-729.
[http://dx.doi.org/10.1016/j.inoche.2010.03.030]
[21]
Ghosh, N.; Ali, A.; Ghosh, R.; Das, S.; Mandal, S.C.; Pal, M. Chronic inflammatory diseases: Progress and prospect with herbal medicine. Curr. Pharm. Des., 2016, 22(2), 247-264.
[http://dx.doi.org/10.2174/1381612822666151112151419] [PMID: 26561064]
[22]
Feng, Q.; Ren, Y.; Wang, Y.; Ma, H.; Xu, J.; Zhou, C.; Yin, Z.; Luo, L. Anti-inflammatory effect of SQC-β-CD on lipopolysaccharide-induced acute lung injury. J. Ethnopharmacol., 2008, 118(1), 51-58.
[http://dx.doi.org/10.1016/j.jep.2008.03.025] [PMID: 18495394]
[23]
Ma, C.; Zhu, L.; Wang, J.; He, H.; Chang, X.; Gao, J.; Shumin, W.; Yan, T. Anti-inflammatory effects of water extract of Taraxacum mongolicum hand.-Mazz on lipopolysaccharide-induced inflammation in acute lung injury by suppressing PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol., 2015, 168(20), 349-355.
[http://dx.doi.org/10.1016/j.jep.2015.03.068] [PMID: 25861954]
[24]
Pan, L.L.; Dai, M. Paeonol from Paeonia suffruticosa prevents TNF-alpha-induced monocytic cell adhesion to rat aortic endothelial cells by suppression of VCAM-1 expression. Phytomedicine, 2009, 16(11), 1027-1032.
[http://dx.doi.org/10.1016/j.phymed.2009.04.003] [PMID: 19541467]
[25]
Nizamutdinova, I.T.; Oh, H.M.; Min, Y.N.; Park, S.H.; Lee, M.J.; Kim, J.S.; Yean, M.H.; Kang, S.S.; Kim, Y.S.; Chang, K.C.; Kim, H.J. Paeonol suppresses intercellular adhesion molecule-1 expression in tumor necrosis factor-alpha-stimulated human umbilical vein endothelial cells by blocking p38, ERK and nuclear factor-kappaB signaling pathways. Int. Immunopharmacol., 2007, 7(3), 343-350.
[http://dx.doi.org/10.1016/j.intimp.2006.11.004] [PMID: 17276892]
[26]
Chae, H.S.; Kang, O.H.; Lee, Y.S.; Choi, J.G.; Oh, Y.C.; Jang, H.J.; Kim, M.S.; Kim, J.H.; Jeong, S.I.; Kwon, D.Y. Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells. Am. J. Chin. Med., 2009, 37(1), 181-194.
[http://dx.doi.org/10.1142/S0192415X0900676X] [PMID: 19222121]
[27]
Liu, M.H.; Lin, A.H.; Lee, H.F.; Ko, H.K.; Lee, T.S.; Kou, Y.R. Paeonol attenuates cigarette smoke-induced lung inflammation by inhibiting ROS-sensitive inflammatory signaling. Mediat. Inflamm., 2014., 2014651890
[http://dx.doi.org/10.1155/2014/651890] [PMID: 25165413]
[28]
Jamal, J.; Mustafa, M.R.; Wong, P.F. Paeonol protects against premature senescence in endothelial cells by modulating Sirtuin 1 pathway. J. Ethnopharmacol., 2014, 154(2), 428-436.
[http://dx.doi.org/10.1016/j.jep.2014.04.025] [PMID: 24768807]
[29]
van Vliet, L.A.; Rodenhuis, N.; Wikström, H.; Pugsley, T.A.; Serpa, K.A.; Meltzer, L.T.; Heffner, T.G.; Wise, L.D.; Lajiness, M.E.; Huff, R.M.; Svensson, K.; Haenen, G.R.; Bast, A. Thiazoloindans and thiazolobenzopyrans: a novel class of orally active central dopamine (partial) agonists. J. Med. Chem., 2000, 43(19), 3549-3557.
[http://dx.doi.org/10.1021/jm000087z] [PMID: 11000009]
[30]
Lee, Y.S.; Chuang, S.H.; Huang, L.Y.; Lai, C.L.; Lin, Y.H.; Yang, J.Y.; Liu, C.W.; Yang, S.C.; Lin, H.S.; Chang, C.C.; Lai, J.Y.; Jian, P.S.; Lam, K.; Chang, J.M.; Lau, J.Y.; Huang, J.J. Discovery of 4-aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 inhibitors. Part I: optimization of in vitro potencies and pharmacokinetic properties. J. Med. Chem., 2014, 57(10), 4098-4110.
[http://dx.doi.org/10.1021/jm401990s] [PMID: 24773549]
[31]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109(15), 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[32]
Fu, P.K.; Yang, C.Y.; Huang, S.C.; Hung, Y.W; Jeng, K.C.; Huang, Y.P.; Chuang, H.; Huang, N.C.; Li, J.P.; Hsu, M.H; Chen, J.K. Evaluation of LPS-Induced acute lung injury attenuation in rats by Aminothiazole-Paeonol derivatives. Molecules, 2017, 22(10), 1605.
[http://dx.doi.org/10.3390/molecules22101605]
[33]
Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med., 2000, 342(18), 1334-1349.
[http://dx.doi.org/10.1056/NEJM200005043421806] [PMID: 10793167]
[34]
Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: the Berlin Definition. JAMA, 2012, 307(23), 2526-2533.
[PMID: 22797452]
[35]
Fujishima, S.; Gando, S.; Daizoh, S.; Kushimoto, S.; Ogura, H.; Mayumi, T.; Takuma, K.; Kotani, J.; Yamashita, N.; Tsuruta, R.; Takeyama, N.; Shiraishi, S.; Araki, T.; Suzuki, K.; Ikeda, H.; Miki, Y.; Suzuki, Y.; Yamaguchi, Y.; Aikawa, N. Infection site is predictive of outcome in acute lung injury associated with severe sepsis and septic shock. Respirology, 2016, 21(5), 898-904.
[http://dx.doi.org/10.1111/resp.12769] [PMID: 27028604]
[36]
Isaacs, J.D. The changing face of rheumatoid arthritis: sustained remission for all? Nat. Rev. Immunol., 2010, 10(8), 605-611.
[http://dx.doi.org/10.1038/nri2804] [PMID: 20651747]
[37]
Miwatashi, S.; Arikawa, Y.; Kotani, E.; Miyamoto, M.; Naruo, K.; Kimura, H.; Tanaka, T.; Asahi, S.; Ohkawa, S. Novel inhibitor of p38 MAP kinase as an anti-TNF-alpha drug: discovery of N-[4-[2-ethyl-4-(3-methylphenyl)-1,3-thiazol-5-yl]-2-pyridyl]benzamide (TAK-715) as a potent and orally active anti-rheumatoid arthritis agent. J. Med. Chem., 2005, 48(19), 5966-5979.
[http://dx.doi.org/10.1021/jm050165o] [PMID: 16162000]
[38]
Portevin, B.; Tordjman, C.; Pastoureau, P.; Bonnet, J.; Nanteril, G.D. 1,3-Diaryl-4,5,6,7-tetrahydro-2H-isoindole derivatives: a new series of potent and selective COX-2 inhibitors in which a sulfonyl group is not a structural requisite. J. Med. Chem., 2000, 43(24), 4582-4593.
[http://dx.doi.org/10.1021/jm990965x] [PMID: 11101350]
[39]
Safina, B.S.; Baker, S.; Baumgardner, M.; Blaney, P.M.; Chan, B.K.; Chen, Y.H.; Cartwright, M.W.; Castanedo, G.; Chabot, C.; Cheguillaume, A.J.; Goldsmith, P.; Goldstein, D.M.; Goyal, B.; Hancox, T.; Handa, R.K.; Iyer, P.S.; Kaur, J.; Kondru, R.; Kenny, J.R.; Krintel, S.L.; Li, J.; Lesnick, J.; Lucas, M.C.; Lewis, C.; Mukadam, S.; Murray, J.; Nadin, A.J.; Nonomiya, J.; Padilla, F.; Palmer, W.S.; Pang, J.; Pegg, N.; Price, S.; Reif, K.; Salphati, L.; Savy, P.A.; Seward, E.M.; Shuttleworth, S.; Sohal, S.; Sweeney, Z.K.; Tay, S.; Tivitmahaisoon, P.; Waszkowycz, B.; Wei, B.; Yue, Q.; Zhang, C.; Sutherlin, D.P. Discovery of novel PI3-kinase δ specific inhibitors for the treatment of rheumatoid arthritis: taming CYP3A4 time-dependent inhibition. J. Med. Chem., 2012, 55(12), 5887-5900.
[http://dx.doi.org/10.1021/jm3003747] [PMID: 22626259]
[40]
Lou, Y.; Han, X.; Kuglstatter, A.; Kondru, R.K.; Sweeney, Z.K.; Soth, M.; McIntosh, J.; Litman, R.; Suh, J.; Kocer, B.; Davis, D.; Park, J.; Frauchiger, S.; Dewdney, N.; Zecic, H.; Taygerly, J.P.; Sarma, K.; Hong, J.; Hill, R.J.; Gabriel, T.; Goldstein, D.M.; Owens, T.D. Structure-based drug design of RN486, a potent and selective Bruton’s tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. J. Med. Chem., 2015, 58(1), 512-516.
[http://dx.doi.org/10.1021/jm500305p] [PMID: 24712864]
[41]
Huang, L.; Zhang, B.; Yang, Y.; Gong, X.; Chen, Z.; Wang, Z.; Zhang, P.; Zhang, Q. Synthesis and anti-inflammatory activity of paeonol analogues in the murine model of complete Freund’s adjuvant induced arthritis. Bioorg. Med. Chem. Lett., 2016, 26(21), 5218-5221.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.060] [PMID: 27712938]
[42]
Decker, M. Hybrid molecules incorporating natural products: applications in cancer therapy, neurodegenerative disorders and beyond. Curr. Med. Chem., 2011, 18(10), 1464-1475.
[http://dx.doi.org/10.2174/092986711795328355] [PMID: 21428895]
[43]
Noh, J.; Kwon, B.; Han, E.; Park, M.; Yang, W.; Cho, W.; Yoo, W.; Khang, G.; Lee, D. Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death. Nat. Commun., 2015, 6(20), 6907.
[http://dx.doi.org/10.1038/ncomms7907] [PMID: 25892552]
[44]
Fortin, S.; Bérubé, G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2013, 8(8), 1029-1047.
[http://dx.doi.org/10.1517/17460441.2013.798296] [PMID: 23646979]
[45]
Jung, E.H.; Hwang, J.S.; Kwon, M.Y.; Kim, K.H.; Cho, H.; Lyoo, I.K.; Shin, S.; Park, J.H.; Han, I.O. A tryptamine-paeonol hybridization compound inhibits LPS-mediated inflammation in BV2 cells. Neurochem. Int., 2016, 100(100), 35-43.
[http://dx.doi.org/10.1016/j.neuint.2016.08.010] [PMID: 27567737]
[46]
Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[47]
Mollica, A.; Locatelli, M.; Stefanucci, A.; Pinnen, F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules, 2012, 17(5), 6083-6099.
[http://dx.doi.org/10.3390/molecules17056083] [PMID: 22614862]
[48]
Himaya, S.W.A.; Ryu, B.; Qian, Z.J.; Kim, S.K. Paeonol from Hippocampus kuda Bleeler suppressed the neuro-inflammatory responses in vitro via NF-κB and MAPK signaling pathways. Toxicol. In Vitro, 2012, 26(6), 878-887.
[http://dx.doi.org/10.1016/j.tiv.2012.04.022] [PMID: 22542583]
[49]
Nam, K.N.; Woo, B.C.; Moon, S.K.; Park, S.U.; Park, J.Y.; Hwang, J.W.; Bae, H.S.; Ko, C.N.; Lee, E.H.; Ph, D. Paeonol attenuates inflammation-mediated neurotoxicity and microglial activation. Neural Regen. Res., 2013, 8(18), 1637-1643.
[PMID: 25206460]
[50]
Qi, J.S.; Wang, Y.L.; Cao, Y. Synthesis and Biological Activity of 2-Hydroxy-4- methoxy Acetophenone condensed the Aminobenzenearsonic acid. Adv. Mat. Res., 2013, 781-784, 1011-1015.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.781-784.1011]
[51]
Nevagi, R.J. Biological and medicinal significance of 2-aminothiazoles. Der. Pharm. Lett., 2014, 6, 134-150.
[52]
Jaen, J.C.; Wise, L.D.; Caprathe, B.W.; Tecle, H.; Bergmeier, S.; Humblet, C.C.; Heffner, T.G.; Meltzer, L.T.; Pugsley, T.A. 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J. Med. Chem., 1990, 33(1), 311-317.
[http://dx.doi.org/10.1021/jm00163a051] [PMID: 1967314]
[53]
Pieroni, M.; Wan, B.; Cho, S.; Franzblau, S.G.; Costantino, G. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents. Eur. J. Med. Chem., 2014, 72(24), 26-34.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.007] [PMID: 24333612]
[54]
Niwata, S.; Fukami, H.; Sumida, M.; Ito, A.; Kakutani, S.; Saitoh, M.; Suzuki, K.; Imoto, M.; Shibata, H.; Imajo, S.; Kiso, Y.; Tanaka, T.; Nakazato, H.; Ishihara, T.; Takai, S.; Yamamoto, D.; Shiota, N.; Miyazaki, M.; Okunishi, H.; Kinoshita, A.; Urata, H.; Arakawa, K. Substituted 3-(phenylsulfonyl)-1-phenylimidazolidine-2,4-dione derivatives as novel nonpeptide inhibitors of human heart chymase. J. Med. Chem., 1997, 40(14), 2156-2163.
[http://dx.doi.org/10.1021/jm960793t] [PMID: 9216834]
[55]
Schröder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.; Stammler, H.G.; Stammler, A.; Pfeiffer, W.D.; Tschesche, H. Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J. Med. Chem., 2001, 44(20), 3231-3243.
[http://dx.doi.org/10.1021/jm010887p] [PMID: 11563922]
[56]
Bachovchin, D.A.; Zuhl, A.M.; Speers, A.E.; Wolfe, M.R.; Weerapana, E.; Brown, S.J.; Rosen, H.; Cravatt, B.F. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J. Med. Chem., 2011, 54(14), 5229-5236.
[http://dx.doi.org/10.1021/jm200502u] [PMID: 21639134]
[57]
Barbosa, M.L.D.; Lima, L.M.; Tesch, R.; Sant’Anna, C.M.R.; Totzke, F.; Kubbutat, M.H.G.; Schächtele, C.; Laufer, S.A.; Barreiro, E.J. Novel 2-chloro-4-anilino-quinazoline derivatives as EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2014, 71(7), 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.058] [PMID: 24269511]
[58]
Abouzid, K.; Shouman, S. Design, synthesis and in vitro antitumor activity of 4-aminoquinoline and 4-aminoquinazoline derivatives targeting EGFR tyrosine kinase. Bioorg. Med. Chem., 2008, 16(16), 7543-7551.
[http://dx.doi.org/10.1016/j.bmc.2008.07.038] [PMID: 18678492]
[59]
Wang, Z.C.; Duan, Y.T.; Qiu, H.Y.; Huang, W.Y.; Wang, P.F.; Yan, X.Q.; Zhang, S.F.; Zhu, H.L. Novel metronidazole-sulfonamide derivatives as potent and selective carbonic anhydrase inhibitors: Design, synthesis and biology analysis. RSC. Adv., 2014, 4(62), 33029-33038.
[http://dx.doi.org/10.1039/C4RA03819C]
[60]
Wang, X.J.; Liu, J.L.; Wang, J.K. [Synthesis and anti-tumor activity of paeonol and its derivatives Yao Xue Xue Bao, 2012, 47(1), 72-76.
[PMID: 22493808]
[61]
Li, W.; Lu, Y.; Wang, Z.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. S Bioorg. Med. Chem. Lett., 17(15), 4113-4117.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.059] [PMID: 17561392]
[62]
Chandrappa, S.; Benaka Prasad, S.B.; Vinaya, K.; Ananda Kumar, C.S.; Thimmegowda, N.R.; Rangappa, K.S. Synthesis and in vitro antiproliferative activity against human cancer cell lines of novel 5-(4-methyl-benzylidene)-thiazolidine-2,4-diones. Invest. New Drugs, 2008, 26(5), 437-444.
[http://dx.doi.org/10.1007/s10637-008-9130-7] [PMID: 18473120]
[63]
Joshi, H.; Pal, T.; Ramaa, C.S. A new dawn for the use of thiazolidinediones in cancer therapy. Expert Opin. Investig. Drugs, 2014, 23(4), 501-510.
[http://dx.doi.org/10.1517/13543784.2014.884708] [PMID: 24597633]
[64]
Blanquicett, C.; Roman, J.; Hart, C.M. Thiazolidinediones as anti-cancer agents. Cancer Ther., 2008, 6(1), 501-534.
[65]
Anh, Hle.T.; Cuc, N.T.; Tai, B.H.; Yen, P.H.; Nhiem, N.X.; Thao, T.; Nam, N.H.; Van Minh, C.; Van Kiem, P.; Kim, Y.H. Synthesis of chromonylthiazolidines and their cytotoxicity to human cancer cell lines. Molecules, 2015, 20(1), 1151-1160.
[http://dx.doi.org/10.3390/molecules20011151] [PMID: 25587789]
[66]
Gitlin, N. Hepatitis B: diagnosis, prevention, and treatment. Clin. Chem., 1997, 43(8 Pt 2), 1500-1506.
[PMID: 9265901]
[67]
McMahon, B.J. Epidemiology and natural history of hepatitis B. Semin. Liver Dis., 2005, 25(Suppl. 1), 3-8.
[http://dx.doi.org/10.1055/s-2005-915644] [PMID: 16103976]
[68]
Huang, T.J.; Chuang, H.; Liang, Y.C.; Lin, H.H.; Horng, J.C.; Kuo, Y.C.; Chen, C.W.; Tsai, F.Y.; Yen, S.C.; Chou, S.C.; Hsu, M.H. Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. Eur. J. Med. Chem., 2015, 90(27), 428-435.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.050] [PMID: 25461891]
[69]
Schröder, J.; Henke, A.; Wenzel, H.; Brandstetter, H.; Stammler, H.G.; Stammler, A.; Pfeiffer, W.D.; Tschesche, H. Structure-based design and synthesis of potent matrix metalloproteinase inhibitors derived from a 6H-1,3,4-thiadiazine scaffold. J. Med. Chem., 2001, 44(20), 3231-3243.
[http://dx.doi.org/10.1021/jm010887p] [PMID: 11563922]
[70]
Bachovchin, D.A.; Zuhl, A.M.; Speers, A.E.; Wolfe, M.R.; Weerapana, E.; Brown, S.J.; Rosen, H.; Cravatt, B.F. Discovery and optimization of sulfonyl acrylonitriles as selective, covalent inhibitors of protein phosphatase methylesterase-1. J. Med. Chem., 2011, 54(14), 5229-5236.
[http://dx.doi.org/10.1021/jm200502u] [PMID: 21639134]
[71]
Huang, Y.P.; Shih, H.P.; Liang, Y.C.; Lin, H.H.; Lin, M.C.; Chen, C.W.; Huang, T.J.; Kuo, Y.C.; Han, C.C.; Hsu, M.H. Advanced generation of Paeonol-Phenylsufonyl derivatives as potential anti-hbv agents. RSC. Adv., 2016, 6(49), 43556-43562.
[72]
Lee, H.J.; Kim, S.A.; Lee, H.J.; Jeong, S.J.; Han, I.; Jung, J.H.; Lee, E.O.; Zhu, S.; Chen, C.Y.; Kim, S.H. Paeonol oxime inhibits bFGF-induced angiogenesis and reduces VEGF levels in fibrosarcoma cells. PLoS One, 2010, 5(8), e12358
[http://dx.doi.org/10.1371/journal.pone.0012358] [PMID: 20808805]
[73]
Rehman, F.; Mairaj, S. Antimicrobial studies of Allicin with Paeonol and its oxime. Int. J. Pharma Bio Sci., 2013, 4(1), 240-249.
[74]
Joseph, D. Tobles, Sedative and analgesia in paediatric intensive care units. Paediatr. Drugs, 1999, 1(2), 109-126.
[http://dx.doi.org/10.2165/00128072-199901020-00004] [PMID: 10937446]
[75]
Teruyaki, M.; Yoshiharu, H.; Ka, Y. Oxime derivative thereof, process for preparing thereof, Herbicidal composition and methods for the destruction of undesirable weeds; Asahi Chem: Ind., 1986.
[76]
Gul, H.I.; Denizci, A.A.; Erciyas, E. Antimicrobial evaluation of some Mannich bases of acetophenones and representative quaternary derivatives. Arzneimittelforschung, 2002, 52(10), 773-777.
[PMID: 12442641]
[77]
Jateley, U.K.; Singh, B.K.; Garg, B.S.; Mishra, P. Synthesis, characterization and XRPD studies of the bioactive complex of 2-hydroxy-3,5-dimethyl acetophenoneoxime (HDMAOX) with oxovanadium (IV). J. Coord. Chem., 2007, 60(20), 2243-2255.
[http://dx.doi.org/10.1080/00958970701260305]
[78]
Mairaj, S.; Rehman, F. Studies on the complexes of 2-hydroxy-4-mothoxy acetophenone oxime. Orient. J. Chem., 2011, 27(1), 221-225.
[79]
Sundberg, M.R.; Uggla, R. Conformational flexibility of the di(1,3-diaminopropane)copper (II) cation Part 3. Structure determination for trans-diaquabis(1,3-diaminopropane-N,N′)copper (II) trans-di (ortho-phthalato-O)bis(1,3-diaminopropane-N,N′)cuprate (II) monohydrate and DFT calculations for the trans-diaquabis(1,3-diaminopropane-N,N′)copper (II) cation2. Inorg. Chim. Acta, 1997, 254(2), 259-265.
[http://dx.doi.org/10.1016/S0020-1693(96)05166-3]
[80]
Xu, T.T.; Gao, J.; Xu, X.Y.; Yang, X.J.; Lu, L.D.; Wang, X. Synthesis, structure and antimicrobial study of two copper (II) complexes derived from paeonol and R-NH-propyldiamine. J. Coord. Chem., 2007, 60(16), 1721-1729.
[http://dx.doi.org/10.1080/00958970601117365]
[81]
Wang, X.L.; Wan, K.; Zhou, C.H. Synthesis of novel sulfanilamide-derived 1,2,3-triazoles and their evaluation for antibacterial and antifungal activities. Eur. J. Med. Chem., 2010, 45(10), 4631-4639.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.031] [PMID: 20708826]
[82]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 759-763.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[83]
Jiang, Y.Q.; Ren, B.Q.; Lv, X.M.; Zhang, W.W.; Li, W.; Xu, G.Q. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1,2,3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39(4), 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[84]
Sugamoto, K.; Matsusita, Y.I.; Matsui, K.; Kurogi, C.; Matsui, T. Synthesis and antibacterial activity of chalcones bearing prenyl or geranyl groups from Angelica keiskei. Tetrahedron, 2011, 67(29), 5346-5359.
[http://dx.doi.org/10.1016/j.tet.2011.04.104]
[85]
Wu, X.; Wu, G.; Zhang, W.; Gu, G.; Sha, S.; Wang, X. [Experiment on extraction, sulfonate of paeonol and its antibiotic effect on plant pathogen Zhong Yao Cai, 2003, 26(11), 778-780.
[PMID: 14989057]
[86]
Kang, Y.B.; Shang, H.S.; Cheng, Y.M. Inhibition activities of paeonol to plant pathogenic fungi in vitro. Acta Phytophysiol. Sin., 2007, 34(6), 580-584.
[87]
Xia, C.G.; Chen, J.L. Toxicity of fumigation and contact of moutan extracts and paeonol to several species of stored product insects of Chinese medicinal materials. J. Zhongkai Agrotech. Coll., 1999, 12(2), 1-8.
[88]
Lai, P.H.; Tian, G.H.; Zhao, H. Synthesis and antimicrobial activity of a paeonol derivative. J. Wuhan Univ., 2010, 56(5), 523-526.
[89]
Liu, C.F. Synthesis and antimicrobial activity of a paeonol derivative: 3-hydroxy-1-(2-hydroxy-4-methoxyphenyl)-3-(2′-bromophenyl)-1-acetone. Chin. J. Pest. Sci., 2016, 18(1), 119-123.
[90]
Gao, J.; Xiang, H.Y.; Xu, T.T.; Hu, J.P.; Wu, Q. Study on the antimicrobial activity of paeonol and its Schiff base derivatives. Chem. Reagents, 2007, 29(1), 59-60.
[91]
Lin, M.; Liu, X.D.; Cao, Z.W. Synthesis and antibacterial activities of Schiff base condensed from paeonol with ethanolamine and its Ni(II), complex. Guangdong Chem. Ind., 2013, 40(2), 24-25.
[92]
Doble, M.; Karthikeyan, S.; Padmaswar, P.A.; Akamanchi, K.G. QSAR studies of paeonol analogues for inhibition of platelet aggregation. Bioorg. Med. Chem., 2005, 13(21), 5996-6001.
[http://dx.doi.org/10.1016/j.bmc.2005.07.027] [PMID: 16140538]
[93]
Poredos, P. Endothelial dysfunction in the pathogenesis of atherosclerosis. Int. Angiol., 2002, 21(2), 109-116.
[PMID: 12110769]
[94]
Schnitzer, T.J.; Kivitz, A.J.; Lipetz, R.S.; Sanders, N.; Hee, A. Comparison of the COX-inhibiting nitric oxide donator AZD3582 and rofecoxib in treating the signs and symptoms of Osteoarthritis of the knee. Arthritis Rheum., 2005, 53(6), 827-837.
[http://dx.doi.org/10.1002/art.21586] [PMID: 16342089]
[95]
Li, F.Y.; Huang, G.D.; Ruan, C.K.; Wei, H.L.; Fan, Q.Q. Design and synthesis of a NO-releasing paeonol derivative. Anhui Nongye Kexue, 2010, 38(14), 7350-7400.
[96]
Bai, Z.W.; He, L.Q.; Fang, W. Synthesis and bioactivity of NO-donating paeonol derivatives. Chem. World, 2018, 59(4), 241-245.
[97]
Akamanchi, K.G.; Padmawar, P.A.; Thatte, U.M.; Rege, N.N.; Dahanukar, S.A. Synthesis and in-vitro evaluation of platelet aggregation inhibitory activity of paeonol and its analogues. Pharm. Pharmacol. Commun., 1999, 5(5), 323-329.
[http://dx.doi.org/10.1211/146080899128734910]
[98]
Huang, H.; Chang, E.J.; Lee, Y.; Kim, J.S.; Kang, S.S.; Kim, H.H. A genome-wide microarray analysis reveals anti-inflammatory target genes of paeonol in macrophages. Inflamm. Res., 2008, 57(4), 189-198.
[http://dx.doi.org/10.1007/s00011-007-7190-3] [PMID: 18363035]
[99]
Li, H.; Dai, M.; Jia, W. Paeonol attenuates high-fat-diet-induced atherosclerosis in rabbits by anti-inflammatory activity. Planta Med., 2009, 75(1), 7-11.
[http://dx.doi.org/10.1055/s-0028-1088332] [PMID: 19003727]
[100]
Li, Y.J.; Bao, J.X.; Xu, J.W.; Murad, F.; Bian, K. Vascular dilation by paeonol--a mechanism study. Vascul. Pharmacol., 2010, 53(3-4), 169-176.
[http://dx.doi.org/10.1016/j.vph.2010.07.001] [PMID: 20643226]
[101]
Pao, K.C.; Zhao, J.F.; Lee, T.S.; Huang, Y.P.; Han, C.C.; Huang, L.C.S.; Wua, K.H.; Hsu, M.H. Low-dose paeonol derivatives alleviate lipid accumulation. RSC. Adv., 2015, 5(8), 5652-5656.
[102]
Forman, H.J.; Zhang, H.; Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med., 2009, 30(1-2), 1-12.
[http://dx.doi.org/10.1016/j.mam.2008.08.006] [PMID: 18796312]
[103]
Yuan, L.; Kaplowitz, N. Glutathione in liver diseases and hepatotoxicity. Mol. Aspects Med., 2009, 30(1-2), 29-41.
[http://dx.doi.org/10.1016/j.mam.2008.08.003] [PMID: 18786561]
[104]
Gould, N.S.; Day, B.J. Targeting maladaptive glutathione responses in lung disease. Biochem. Pharmacol., 2011, 81(2), 187-193.
[http://dx.doi.org/10.1016/j.bcp.2010.10.001] [PMID: 20951119]
[105]
Waldbaum, S.; Patel, M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res., 2010, 88(1), 23-45.
[http://dx.doi.org/10.1016/j.eplepsyres.2009.09.020] [PMID: 19850449]
[106]
Kachadourian, R.; Day, B.J.; Pugazhenti, S.; Franklin, C.C.; Genoux-Bastide, E.; Mahaffey, G.; Gauthier, C.; Di Pietro, A.; Boumendjel, A. A synthetic chalcone as a potent inducer of glutathione biosynthesis. J. Med. Chem., 2012, 55(3), 1382-1388.
[http://dx.doi.org/10.1021/jm2016073] [PMID: 22239485]
[107]
Kang, J.J.; Chen, L.M.; Lin, Y.W. Synthesis and anti-oxidation activity of paeonol Schiff base derivatives. J. Fujian Med. Univ., 2011, 45(1), 26-28.
[108]
Qin, D.D.; Yang, Z.Y.; Qi, G.F.; Li, T.R. Crystal structure and biological activities of water-soluble nickel(II) and copper(II) complexes of a Schiff-base derived from paeonol. Transit. Metal. Chem., 2009, 34(5), 499-505.
[http://dx.doi.org/10.1007/s11243-009-9222-z]
[109]
Xu, T.T. The research of antioxidant activity about paeonol derivative. Tianjin Chem. Ind., 2012, 26(4), 20-21.
[110]
Palmer, A.M. Neuroprotective therapeutics for Alzheimer’s disease: progress and prospects. Trends Pharmacol. Sci., 2011, 32(3), 141-147.
[http://dx.doi.org/10.1016/j.tips.2010.12.007] [PMID: 21256602]
[111]
Zhou, A.; Wu, H.; Pan, J.; Wang, X.; Li, J.; Wu, Z.; Hui, A. Synthesis and evaluation of paeonol derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Molecules, 2015, 20(1), 1304-1318.
[http://dx.doi.org/10.3390/molecules20011304] [PMID: 25594344]
[112]
Yoon, J.; Fujii, S.; Solomon, E.I. Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase. Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6585-6590.
[http://dx.doi.org/10.1073/pnas.0902127106] [PMID: 19346471]
[113]
Zhu, T.H.; Cao, S.W.; Yu, Y.Y. Synthesis, characterization and biological evaluation of paeonol thiosemicarbazone analogues as mushroom tyrosinase inhibitors. Int. J. Biol. Macromol., 2013, 62, 589-595.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.09.056] [PMID: 24120880]
[114]
Sheng, Z.; Ge, S.; Xu, X.; Zhang, Y.; Wu, P.; Zhang, K.; Xu, X.; Li, C.; Zhao, D.; Tang, X. Design, synthesis and evaluation of cinnamic acid ester derivatives as mushroom tyrosinase inhibitors. MedChemComm, 2018, 9(5), 853-861.
[http://dx.doi.org/10.1039/C8MD00099A] [PMID: 30108974]
[115]
Tsai, C.H.; Hsu, M.H.; Huang, P.H.; Hsieh, C.T.; Chiu, Y.M.; Shieh, D.C.; Lee, Y.J.; Tsay, G.J.; Wu, Y.Y. A paeonol derivative, YPH-PA3 promotes the differentiation of monocyte/macrophage lineage precursor cells into osteoblasts and enhances their autophagy. Eur. J. Pharmacol., 2018, 832, 104-113.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.024] [PMID: 29782859]
[116]
Han, F.; Zhuang, T.T.; Chen, J.J.; Zhu, X.L.; Cai, Y.F.; Lu, Y.P. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer’s disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One, 2017, 12(9), e0185102
[http://dx.doi.org/10.1371/journal.pone.0185102] [PMID: 28934273]
[117]
Li, W.; Koike, K.; Asada, Y.; Yoshikawa, T.; Nikaido, T. Biotransformation of paeonol by Panax ginseng root and cell cultures. J. Mol. Catal., B Enzym., 2005, 35(4-6), 117-121.
[http://dx.doi.org/10.1016/j.molcatb.2005.06.006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy