Skip to main content
Log in

Cellular maturation of an iron-type nitrile hydratase interrogated using EPR spectroscopy

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nitrile hydratase (NHase) is a non-heme iron-containing enzyme that has applications in commodity chemical synthesis, pharmaceutical intermediate synthesis, and reclamation of nitrile-(bromoxynil) contaminated land. Mechanistic study of the enzyme has been complicated by the expression of multiple overlapping Fe(III) EPR signals. The individual signals were recently assigned to distinct chemical species with the assistance of DFT calculations. Here, the origins and evolution of the EPR signals from cells overexpressing the enzyme were investigated, with the aims of optimizing the preparation of homogeneous samples of NHase for study and investigating the application of E. coli overexpressing the enzyme for “green” chemistry. It was revealed that nitrile hydratase forms two sets of inactive complexes in vivo over time. One is due to reversible complexation with endogenous carboxylic acids, while the second is due to irreversibly inactivating oxidation of an essential cysteine sulfenic acid. It was shown that the homogeneity of preparations can be improved by employing an anaerobic protocol. The ability of the substrates acrylonitrile and acetonitrile to be taken up by cells and hydrated to the corresponding amides by NHase was demonstrated by EPR identification of the product complexes of NHase in intact cells. The inhibitors butyric acid and butane boronic acid were also taken up by E. coli and formed complexes with NHase in vivo, indicating that care must be taken with environmental variables when attempting microbially assisted synthesis and reclamation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BuBA:

Butane boronic acid

ELNMR:

Electron–electron double resonance-detected nuclear magnetic resonance

ENDOR:

Electron-nuclear double resonance

EPR:

Electron paramagnetic resonance

NHase:

Nitrile hydratase

NHaseAq :

Active nitrile hydratase and its EPR signal

NHaseBA :

Butyrate (carboxylate) complex of active nitrile hydratase and its EPR signal

NHaseOx:

Inactive nitrile hydratase in which the cysteine sulfenic acid has been oxidized to sulfinic acid, and its EPR signal

NHaseOxBA :

Butyrate (carboxylate) complex of inactive nitrile hydratase in which the cysteine sulfenic acid has been oxidized to sulfinic acid, and its EPR signal

References

  1. Mathew C, Nagasawa T, Kobayashi M, Yamada H (1988) Appl Environ Microbiol 54:1030–1032

    CAS  PubMed  Google Scholar 

  2. Kovacs JA (2004) Chem Rev 104:825–848

    Article  CAS  Google Scholar 

  3. Banerjee A, Sharma R, Banerjee U (2002) Appl Microbiol Biotechnol 60:33–44

    Article  CAS  Google Scholar 

  4. Prasad S, Bhalla TC (2010) Biotechnol Adv 28:725–741

    Article  CAS  Google Scholar 

  5. Mylerova V, Martinkova L (2003) Curr Org Chem 7:1–17

    Google Scholar 

  6. Baxter J, Cummings SP (2006) Antonie Van Leeuwenhoek 90:1–17

    Article  CAS  Google Scholar 

  7. Harrop TC, Mascharak PK (2004) Acc Chem Res 37:253–260

    Article  CAS  Google Scholar 

  8. Jin H, Turner IM Jr, Nelson MJ, Gurbiel RJ, Doan PE, Hoffman BM (1993) J Am Chem Soc 115:5290–5291

    Article  CAS  Google Scholar 

  9. Lu J, Zheng Y, Yamagishi H, Odaka M, Tsujimura M, Maeda M, Endo I (2003) FEBS Lett 553:391–396

    Article  CAS  Google Scholar 

  10. Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T (1991) J Bacteriol 173:2465–2472

    Article  CAS  Google Scholar 

  11. Hashimoto Y, Nishiyama M, Horinouchi S, Beppu T (1994) Biosci Biotechnol Biochem 58:1859–1869

    Article  CAS  Google Scholar 

  12. Nojiri M, Yohda M, Odaka M, Matsushita Y, Tsujimura M, Yoshida T, Dohmae N, Takio K, Endo I (1999) J Biochem 125:696–704

    Article  CAS  Google Scholar 

  13. Haas C, Rodionov D, Kropat J, Malasarn D, Merchant S, de Crecy-Lagard V (2009) BMC Genom 10:470

    Article  Google Scholar 

  14. Cameron RA, Sayed M, Cowan DA (2005) Biochim Biophys Acta 1725:35–46

    Article  CAS  Google Scholar 

  15. Zhou Z, Hashimoto Y, Cui T, Washizawa Y, Mino H, Kobayashi M (2010) Biochemistry 49:9638–9648

    Article  CAS  Google Scholar 

  16. Stein N, Gumataotao N, Hajnas N, Wu R, Lankathilaka KPW, Bornscheuer UT, Liu D, Fiedler AT, Holz RC, Bennett B (2017) Biochemistry 56:3068–3077

    Article  CAS  Google Scholar 

  17. Light KM, Yamanaka Y, Odaka M, Solomon EI (2015) Chem Sci 6:6280–6294

    Article  CAS  Google Scholar 

  18. Rzeznicka K, Schätzle S, Böttcher D, Klein J, Bornscheuer UT (2010) Appl Microbiol Biotechnol 85:1417–1425

    Article  CAS  Google Scholar 

  19. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  20. Gumataotao N, Kuhn ML, Hajnas N, Holz RC (2013) J Biol Chem 288:15532–15536

    Article  CAS  Google Scholar 

  21. Sharma A, Gaidamakova EK, Matrosova VY, Bennett B, Daly MJ, Hoffman BM (2013) Proc Natl Acad Sci USA 110:5945–5950

    Article  CAS  Google Scholar 

  22. Bennett B, Gruer MJ, Guest JR, Thomson AJ (1995) Eur J Biochem 233:317–326

    Article  CAS  Google Scholar 

  23. Friedrich T (1998) Biochim Biophys Acta 1364:134–146

    Article  CAS  Google Scholar 

  24. Martinez S, Wu R, Sanishvili R, Liu D, Holz R (2014) J Am Chem Soc 136:1186–1189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Science Foundation (CHE-1462201, BB; CHE-1412443, RCH; CHE-1808711, RCH & BB; CHE-1532168, BB & RCH), the Todd Wehr Foundation, and Bruker Biospin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard C. Holz or Brian Bennett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lankathilaka, K.P.W., Stein, N., Holz, R.C. et al. Cellular maturation of an iron-type nitrile hydratase interrogated using EPR spectroscopy. J Biol Inorg Chem 24, 1105–1113 (2019). https://doi.org/10.1007/s00775-019-01720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01720-y

Keywords

Navigation