Skip to main content
Log in

Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

Mungbean (Vigna radiata) and ricebean (V. umbellata) were utilized to obtain an inter-specific recombinant inbred line (RIL) population with the objective of detecting quantitative trait loci (QTL) associated with mungbean yellow mosaic virus (MYMV) resistance. To precisely map QTLs, accurate genetic linkage maps are essential. In the present study, genotyping-by-sequencing (GBS) platform was utilized to develop the genetic linkage map. The map contained 538 single nucleotide polymorphism (SNP) markers, consisted of 11 linkage groups and spanned for 1291.7 cM with an average marker distance of 2.40 cM. The individual linkage group ranged from 90.2 to 149.1 cM in length, and the SNP markers were evenly distributed in the genetic linkage map, with 30–79 SNP markers per chromosome. The QTL analysis using the genetic map and 2 years (2015 and 2016) of phenotyping data identified five QTLs with phenotypic variation explained (PVE) from 10.11 to 20.04%. Of these, a QTL on chromosome 4, designated as qMYMV4-1, was major and stably detected in the same marker interval in both years. This QTL region harbours possible candidate genes for controlling MYMV resistance. The linkage map and QTL/gene (s) for MYMV resistance identified in this study should be useful for QTL fine mapping and cloning for further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alam AM, Somta P, Srinives P (2014) Identification and confirmation of quantitative trait loci controlling resistance to mungbean yellow mosaic disease in mungbean [Vigna radiata (L.) Wilczek]. Mol Breed 34(3):1497–1506

    Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of resistance in soybean with a genotyping-by-sequencing approach. Plat Genome 7:1–13

    Google Scholar 

  • Bhanu AN, Kumar P, Singh MN, Srivastava K, Hemantaranjan A (2017) Assessment of genetic purity of inter-specific F1 hybrids involving Vigna radiata and Vigna umbellata. J Exp Biol Agric Sci 5:636–643

    CAS  Google Scholar 

  • Bharathi A, Vijay Selvaraj KS, Veerabadhiran P, Subba Lakshmi B (2006) Crossability barriers in mungbean (Vigna radiata L. Wilczek): with its wild relatives. Indian J Crop Sci 1:120–124

    Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartwright DA, Troggio M, Velasco R, Gutin A (2007) Genetic mapping in the presence of genotyping errors. Genetics 176:2521–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaisan T, Somta P, Srinives P, Chanprame S, Kaveeta R, Dumrongkittikule S (2013) Development of tetraploid plants from an interspecific hybrid between mungbean (Vigna radiata) and rice bean (Vigna umbellata). J Crop Sci Biotechnol 16:45–51

    Google Scholar 

  • Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of cercospora leaf spot resistance in mungbean. Mol Breed 28(2):255–264

    Google Scholar 

  • Chen NE, Baker LR, Honma S (1983) Interspecific cross ability among four species of Vigna food legumes. Euphytica 32:925–937

    Google Scholar 

  • Chen H-M, Ku H-M, Schafleitner R, Bains TS, Kuo CG, Liu C-A, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192(2):205–216

    Google Scholar 

  • Cheng Q, Dong L, Gao T, Liu T, Li N, Wang L, Zhang S (2018) The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot 69(10):2527–2541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deepa J, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Gen Genomics 290:559–571

    Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Google Scholar 

  • Durrant W, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Erpen L, Devi HS, Grosser JW, Dutt M (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132(1):1–25

    CAS  Google Scholar 

  • Feuillet C, Schachermayr G, Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11:45–52

    CAS  PubMed  Google Scholar 

  • Gao QM, Zhu S, Kachroo P, Kachroo A (2015) Signal regulators of systemic acquired resistance. Front. Plant Sci 6:1–12

    Google Scholar 

  • Hammond-Kosack KE, Jones JD (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry M, Magner T, McIntyre C, Aitken EA, Liu C (2003) Identification of a major locus conferring resistance to powdery mildew (Erysiphe polygoni DC) in mungbean (Vigna radiata L. Wilczek) by QTL analysis. Genome 46(5):738–744

    CAS  PubMed  Google Scholar 

  • Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A 112:8780–8785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu JU, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7(8):e41304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha B-K, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim KS, Gwag J-G, Moon J-K, Lee Y-H, Park B-S, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee J (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:6443

    Google Scholar 

  • Karthikeyan A, Vanitharani R, Balaji V, Anuradha S, Thillaichidambaram P, Shivaprasad PV, Parameswari C, Balamani V, Saminathan M, Veluthambi K (2004) Analysis of an isolate of Mungbean yellow mosaic virus (MYMV) with a highly variable DNA B component. Arch Virol 149(8):1643–1652

    CAS  PubMed  Google Scholar 

  • Karthikeyan A, Shobhana V, Sudha M, Raveendran M, Senthil N, Pandiyan M, Nagarajan P (2014) Mungbean yellow mosaic virus (MYMV): a threat to green gram (Vigna radiata) production in Asia. Int J Pest Manag 60(4):314–324

    CAS  Google Scholar 

  • Karthikeyan A, Li K, Jiang H, Ren R, Li C, Zhi H, Chen S, Gai J (2017) Inheritance, fine-mapping, and candidate gene analyses of resistance to soybean mosaic virus strain SC5 in soybean. Mol Genet Genomics 292(4):811–822

    CAS  PubMed  Google Scholar 

  • Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, Bains TS, Sirari A, Kaur L, Srinives P (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakistan. Breed Sci 63:367–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrides C, Lawn R, Godwin I, Manners J, Imrie B (2000) Two genetic linkage maps of mungbean using RFLP and RAPD markers. Aust J Agric Res 51(4):415–425

    CAS  Google Scholar 

  • Lee S, Kumar MS, Kang M, Rojas CM, Tang Y, Oh S, Choudhury SR, Lee HK, Ishiga Y, Allen RD, Pandey S, Mysore KS (2017) The small GTPase, nucleolar GTP-binding protein 1 (NOG1), has a novel role in plant innate immunity. Sci Rep 7:9260

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu H, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defense responses against pathogen infection and oxidative stress. J Exp Bot 59(8):2133–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Wu J, Wang L, Fan B, Cao Z, Su Q, Zhang Z, Wang Y, Tian J, Wang S (2017) Quantitative trait locus mapping under irrigated and drought treatments based on a novel genetic linkage map in mungbean (Vigna radiata L.). Theor Appl Genet 130(11):2375–2393

    CAS  PubMed  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Sci 262:1432–1436

    CAS  Google Scholar 

  • Moeder W, Yoshioka K, Klessig DF (2005) Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens. Mol Plant-Microbe Interact 18:116–124

    CAS  PubMed  Google Scholar 

  • Nurnberger T, Kemmerling B (2006) Receptor protein kinases-pattern recognition receptors in plant immunity. Trends Plant Sci 11:519–522

    PubMed  Google Scholar 

  • Pandiyan M, Senthil N, Ramamoorthi N, Muthiah AR, Tomooka N, Duncan V, Jayaraj T (2010) Interspecific hybridization of Vigna radiata × 13 wild Vigna species for developing MYMV donar. Electron J. Plant Breed 1:600–610

    Google Scholar 

  • Park CJ, Caddell DF, Ronald PC (2012) Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front Plant Sci 3:177

    PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome J 5(3):92–102

    CAS  Google Scholar 

  • Qi J, Li J, Han X, Li R, Wu J, Yu H, Hu L, Xiao Y, Lu J, Lou Y (2016) Jasmonic acid carboxyl methyl transferase regulates development and herbivory-induced defense response in rice. J Integr Plant Biol 58:564–576

    CAS  PubMed  Google Scholar 

  • Saintenac C, Lee WS, Cambon F, Rudd JJ, King RC, Marande W, Powers SJ, Bergès H, Phillips AL, Uauy C, Hammond-Kosack KE, Langin T, Kanyuka K (2018) Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat Genet 50:368–374

    CAS  PubMed  Google Scholar 

  • Sano H, Ohashi Y (1995) Involvement of small GTP-binding proteins in defense signal-transduction pathways of higher plants. PNAS 92:4138–4144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena RK, Kale SM, Kumar V, Parupalli S, Joshi S, Singh VK, Garg V, Das RR, Sharma M, Yamini KN, Ghanta A, Rathore A, Sameer Kumar CV, Saxena KB, Varshney RK (2017) Genotyping-by sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7:1813

    PubMed  PubMed Central  Google Scholar 

  • Schafleitner R, Huang SM, Chu SH, Yen JY, Lin CY, Yan MR, Krishnan B, Liu MS, Lo HF, Chen CY, Long-fang OC (2016) Identification of single nucleotide polymorphism markers associated with resistance to bruchids (Calloso bruchus spp.) in wild mungbean (Vigna radiata var. sublobata) and cultivated V. radiata through genotyping by sequencing and quantitative trait locus analysis. BMC Plant Biol 16(1):159

    PubMed  PubMed Central  Google Scholar 

  • Shan T, Rong W, Xu H, Du L, Liu X, Zhang Z (2016) The wheat R2R3-MYB transcription factor TaRIM1 participates in resistance response against the pathogen Rhizoctonia cerealis infection through regulating defense genes. Sci Rep 6:28777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Sharma YR, Kaur L (1992) Methods of rating yellow mosaic virus of mungbean and urdbean. Plant Dis Res 7:1–6

    Google Scholar 

  • Smigocki AC, Wilson D (2004) Pest and disease resistance enhanced by heterologous suppression of a Nicotiana plumbaginifolia cytochrome P450 gene. Biotechnol Lett 26:1809–1814

    CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Sci 270:1804–1806

    CAS  Google Scholar 

  • Su C, Wang W, Gong S, Zuo J, Li S, Xu S (2017) High density linkage map construction and mapping of yield trait QTLs in maize (Zea mays) using the genotyping-by-sequencing (GBS) technology. Front Plant Sci 8:1–14

    Google Scholar 

  • Sudha M (2009) DNA isolation protocol for Vigna radiata with free of phenolics. Nat Protoc 167

  • Sudha M, Anusuya P, Mahadev NG, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Balasubramanian P (2013a) Molecular studies on mungbean (Vigna radiata ) and ricebean (Vigna umbellata) interspecific hybridization for Mungbean yellow mosaic virus resistance and development of species-specific SCAR marker for ricebean. Arch Phytopathol Plant Prot 46(5):503–517

    CAS  Google Scholar 

  • Sudha M, Karthikeyan A, Nagarajan P, Raveendran M, Senthil N, Pandiyan M, Angappan K, Ramalingam J, Bharathi M, Rabindran R, Veluthambi K, Balasubramania P (2013b) Screening of mungbean (Vigna radiata) germplasm for resistance to mungbean yellow mosaic virus using agroinoculation. Can J Plant Pathol 46(8):717–723

    Google Scholar 

  • Sudha M, Karthikeyan A, Shobhana VG, Nagarajan P, Raveendran M, Senthil N (2015) Search for Vigna species conferring resistance to Mungbean yellow mosaic virus in mungbean. Plant Genetic Res 13(02):162–167

    CAS  Google Scholar 

  • Tian GL, Miao H, Yang YH, Zhou J, Lu HW, Wang Y (2016) Genetic analysis and fine mapping of watermelon mosaic virus resistance gene in cucumber. Mol Breed 36:131

    Google Scholar 

  • Usharani K, Surendranath B, Haq Q, Malathi VG (2004) Yellow mosaic virus infecting soybean in northern India is distinct from the species infecting soybean in southern and western India. Curr Sci:845–850

  • Van Ooijen JW, Voorrips RE (2006) JoinMap 4.0: software for the calculation of genetic linkage maps. Plant Res Inter Wageningen

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Cited 23 Oct 2006

  • Wang L, Wu C, Zhong M, Zhao D, Mei L, Chen H, Wang S, Liu C, Cheng X (2016) Construction of an integrated map and location of a bruchid resistance gene in mungbean. Crop J 4(5):360–366

    Google Scholar 

  • Young N, Kumar L, Menancio-Hautea D, Danesh D, Talekar N, Shanmugasundarum S, Kim D (1992) RFLP mapping of a major bruchid resistance gene in mungbean (Vigna radiata L. Wilczek). Theor Appl Genet 84(7–8):839–844

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Centre of Innovation (CI), Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, is acknowledged for providing green house and instrumentation facilities.

Funding

This work was financially supported through grants from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (GOI) project entitled "Developement and validation of SNPmarkers platform for Vigna complex to map the MYMV and bruchid resistance (SERB/F/1506/2013-14 Dt 11.06.2013), the Department of Biotechnology, GOI (BT/PR5095/AGR/2/847/2012, Phase: II, Dt 27-5-2015), the DST-SERB NPDF fellowship program (PDF/2016/003676) and the Tamil Nadu state government under the National Agricultural Development Programme (NADP)/Rashtriya Krishi Vikas Yojana (RKVY). The funders had no role in work design, data collection and analysis, or decision and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NS, MP and AK conceived and designed the experiments. TJY and GK provided advice on the experimental design and data analysis. MP, MKM, NJ, MS, MR and CV carried out the field experiments. MKM, JM, WJ, MD and AK performed the laboratory work. JM, AK, MKM and MD analysed the data. AK, MKM and NS wrote the manuscript.

Corresponding authors

Correspondence to Muthaiyan Pandiyan or Natesan Senthil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Communicated by: Barbara Naganowska

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathivathana, M.K., Murukarthick, J., Karthikeyan, A. et al. Detection of QTLs associated with mungbean yellow mosaic virus (MYMV) resistance using the interspecific cross of Vigna radiata × Vigna umbellata. J Appl Genetics 60, 255–268 (2019). https://doi.org/10.1007/s13353-019-00506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-019-00506-x

Keywords

Navigation