Skip to main content
Log in

What dielectric spectroscopy can tell us about supramolecular networks

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Polymers which can form supramolecular networks are a promising class of materials to provide highly sought-after properties such as self-healing, enhanced mechanical strength, super-stretchability as well as easy recyclability. However, due to the vast range of possible chemical structures it is very demanding to optimize these materials for the desired performance. Consequently, a detailed understanding of the molecular processes that govern the macroscopic properties is paramount to their technological application. Here we discuss some telechelic model systems with hydrogen-bonding end groups and how dielectric spectroscopy in combination with linear oscillatory shear rheology helped to understand the association mechanism on a molecular scale, and verify the model of bond-lifetime renormalization. Furthermore, we analyze a limitation of these H-bonding polymers, namely that there is a trade-off between high plateau modulus and long terminal relaxation time --both cannot be maximized at the same time. Finally, we show how more complex end groups phase separate from the main chain melt and thus lead to a more sophisticated rheological behavior which can overcome that limitation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K. Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer, Science 278, 1601 (1997)

    ADS  Google Scholar 

  2. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Nature 451, 977 (2008)

    ADS  Google Scholar 

  3. M. Burnworth, L. Tang, J.R. Kumpfer, A.J. Duncan, F.L. Beyer, G.L. Fiore, S.J. Rowan, C. Weder, Nature 472, 334 (2011)

    ADS  Google Scholar 

  4. J. Kang, D. Miyajima, T. Mori, Y. Inoue, Y. Itoh, T. Aida, Science 347, 646 (2015)

    ADS  Google Scholar 

  5. Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)

    ADS  Google Scholar 

  6. E. Filippidi, T.R. Cristiani, C.D. Eisenbach, J.H. Waite, J.N. Israelachvili, B.K. Ahn, M.T. Valentine, Science 358, 502 (2017)

    ADS  Google Scholar 

  7. R.J. Varley, S. Shen, S. van der Zwaag, Polymer 51, 679 (2010)

    Google Scholar 

  8. R.K. Bose, N. Hohlbein, S.J. Garcia, A.M. Schmidt, S. van der Zwaag, Phys. Chem. Chem. Phys. 17, 1697 (2015)

    Google Scholar 

  9. D.-D. Zhang, Y.-B. Ruan, B.-Q. Zhang, X. Qiao, G. Deng, Y. Chen, C.-Y. Liu, Polymer 120, 189 (2017)

    Google Scholar 

  10. A. Campanella, D. Döhler, W.H. Binder, Macromol. Rapid Commun. 39, 1700739 (2018)

    Google Scholar 

  11. K. Yu, A. Xin, Q. Wang, J. Mech. Phys. Solids 121, 409 (2018)

    ADS  Google Scholar 

  12. P.-F. Cao, B. Li, T. Hong, J. Townsend, Z. Qiang, K. Xing, K.D. Vogiatzis, Y. Wang, J.W. Mays, A.P. Sokolov, T. Saito, Adv. Funct. Mater. 28, 1800741 (2018)

    Google Scholar 

  13. X. Hu, J. Zhou, M. Vatankhah-Varnosfaderani, W.F.M. Daniel, Q. Li, A.P. Zhushma, A.V. Dobrynin, S.S. Sheiko, Nat. Commun. 7, 12919 (2016)

    ADS  Google Scholar 

  14. J. Li, J.A. Viveros, M.H. Wrue, M. Anthamatten, Adv. Mater. 19, 2851 (2007)

    Google Scholar 

  15. B.J.B. Folmer, R.P. Sijbesma, R.M. Versteegen, J.A.J. van der Rijt, E.W. Meijer, Adv. Mater. 12, 874 (2000)

    Google Scholar 

  16. K.E. Feldman, M.J. Kade, E.W. Meijer, C.J. Hawker, E.J. Kramer, Macromolecules 42, 9072 (2009)

    ADS  Google Scholar 

  17. Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Prog. Polym. Sci. 80, 39 (2018)

    Google Scholar 

  18. S.-L. Li, T. Xiao, C. Lin, L. Wang, Chem. Soc. Rev. 41, 5950 (2012)

    Google Scholar 

  19. A. Kulkarni, A. Lele, S. Sivaram, P.R. Rajamohanan, S. Velankar, A. Chatterji, Macromolecules 48, 6580 (2015)

    ADS  Google Scholar 

  20. R.D. Lundberg, H.S. Makowski, L. Westerman, in Ions in Polymers (American Chemical Society, Washington DC, 1980)

  21. A.J. Wilson, Soft Matter 3, 409 (2007)

    ADS  Google Scholar 

  22. A.C. Legon, D.J. Millen, Acc. Chem. Res. 20, 39 (1987)

    Google Scholar 

  23. W.W. Cleland, P.A. Frey, J.A. Gerlt, J. Biol. Chem. 273, 25529 (1998)

    Google Scholar 

  24. J.-M. Lehn, Makromol. Chem. Macromol. Symp. 69, 1 (1993)

    Google Scholar 

  25. T. Yan, K. Schröter, F. Herbst, W.H. Binder, T. Thurn-Albrecht, Macromolecules 50, 2973 (2017)

    ADS  Google Scholar 

  26. G. Broze, R. Jerome, Ph. Teyssie, C. Marco, J. Polym. Sci.: Polym. Phys. 21, 2205 (1983)

    ADS  Google Scholar 

  27. F. Herbst, K. Schröter, I. Gunkel, S. Gröger, T. Thurn-Albrecht, J. Balbach, W.H. Binder, Macromolecules 43, 10006 (2010)

    ADS  Google Scholar 

  28. J. Lacombe, C. Soulie-Ziakovic, Polym. Chem. 8, 5954 (2017)

    Google Scholar 

  29. E.A. Appel, R.A. Forster, A. Koutsioubas, C. Toprakcioglu, O.A. Scherman, Angew. Chem. 126, 10202 (2014)

    Google Scholar 

  30. J. Horrion, R. Jerome, Ph. Teyssie, C. Marco, C.E. Williams, Polymer 29, 1203 (1988)

    Google Scholar 

  31. F.J. Stadler, W. Pyckhout-Hintzen, J.-M. Schumers, C.-A. Fustin, J.-F. Gohy, C. Bailly, Macromolecules 42, 6181 (2009)

    ADS  Google Scholar 

  32. D.J. Yarusso, S.L. Cooper, Macromolecules 16, 1871 (1983)

    ADS  Google Scholar 

  33. C. Slusarczyk, A. Włochowicz, A. Gronowski, Z. Wojtczak, Polymer 29, 1581 (1988)

    Google Scholar 

  34. J. Ledent, F. Fontaine, H. Reynaers, R. Jerome, Polym. Bull. 14, 461 (1985)

    Google Scholar 

  35. W.J. Macknight, W.P. Taggart, R.S. Stein, J. Polym. Sci.: Polym. Symp. 45, 113 (1974)

    Google Scholar 

  36. G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 996 (1983)

    ADS  Google Scholar 

  37. G. Broze, R. Jerome, P. Teyssie, C. Marco, Macromolecules 16, 1771 (1983)

    ADS  Google Scholar 

  38. L.J. Fetters, W.W. Graessley, N. Hadjichristidis, A.D. Kiss, D.S. Pearson, L.B. Younghouse, Macromolecules 21, 1644 (1988)

    ADS  Google Scholar 

  39. M. Müller, E.W. Fischer, F. Kremer, U. Seidel, R. Stadler, Colloid Polym. Sci. 273, 38 (1995)

    Google Scholar 

  40. M. Müller, R. Stadler, F. Kremer, G. Williams, Macromolecules 28, 6942 (1995)

    ADS  Google Scholar 

  41. B.J. Gold, C.H. Hövelmann, C. Weiss, A. Radulescu, J. Allgaier, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, Polymer 87, 123 (2016)

    Google Scholar 

  42. W. Denissen, J.M. Winne, F.E. Du Prez, Chem. Sci. 7, 30 (2016)

    Google Scholar 

  43. D.J. Fortman, J.P. Brutman, G.X. De Hoe, R.L. Snyder, W.R. Dichtel, M.A. Hillmyer, ACS Sustain. Chem. Eng. 6, 11145 (2018)

    Google Scholar 

  44. B.J. Gold, C.H. Hövelmann, N. Lühmann, N.K. Szekely, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, ACS Macro Lett. 6, 73 (2017)

    Google Scholar 

  45. B.J. Gold, C.H. Hövelmann, N. Lühmann, W. Pyckhout-Hintzen, A. Wischnewski, D. Richter, J. Rheol. 61, 1211 (2017)

    ADS  Google Scholar 

  46. A. Shabbir, I. Javakhishvili, S. Cerveny, S. Hvilsted, A.L. Skov, O. Hassager, N.J. Alvarez, Macromolecules 49, 3899 (2016)

    ADS  Google Scholar 

  47. K. Xing, M. Tress, P. Cao, S. Cheng, T. Saito, V.N. Novikov, A.P. Sokolov, Soft Matter 14, 1235 (2018)

    ADS  Google Scholar 

  48. K. Xing, M. Tress, P. Cao, F. Fan, S. Cheng, T. Saito, A.P. Sokolov, Macromolecules 49, 3138 (2016)

    ADS  Google Scholar 

  49. H. Wagner, R. Richert, J. Phys. Chem. B 103, 4071 (1999)

    Google Scholar 

  50. S. Havriliak, S. Negami, Polymer 8, 161 (1967)

    Google Scholar 

  51. F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, Heidelberg, 2003)

  52. M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 40, 305 (2002)

    Google Scholar 

  53. H. Vogel, Phys. Z. 22, 645 (1921)

    Google Scholar 

  54. G.S. Fulcher, J. Am. Chem. Soc. 8, 339 (1925)

    Google Scholar 

  55. G. Tammann, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926)

    Google Scholar 

  56. Z. Zhang, Q. Chen, R.H. Colby, Soft Matter 14, 2961 (2018)

    ADS  Google Scholar 

  57. H. Goldansaz, C.-A. Fustin, M. Wübbenhorst, E. van Ruymbeke, Macromolecules 49, 1890 (2016)

    ADS  Google Scholar 

  58. Q. Chen, G.J. Tudryn, R.H. Colby, J. Rheol. 57, 1441 (2013)

    ADS  Google Scholar 

  59. Y. Matsumiya, H. Watanabe, O. Urakawa, T. Inoue, Macromolecules 49, 7088 (2016)

    ADS  Google Scholar 

  60. K.S. Gilroy, W.A. Phillips, Phil. Mag. B 13, 735 (1981)

    ADS  Google Scholar 

  61. Y. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 359, 72 (2018)

    ADS  Google Scholar 

  62. B. Hartmann, G.F. Lee, J.D. Lee, J. Acoust. Soc. Am. 95, 226 (1994)

    ADS  Google Scholar 

  63. T. Nicolai, G. Floudas, Macromolecules 31, 2578 (1998)

    ADS  Google Scholar 

  64. F. Tanaka, S. Edwards, Macromolecules 25, 1516 (1992)

    ADS  Google Scholar 

  65. F. Tanaka, S. Edwards, J. Non-Newton. Fluid Mech. 43, 247 (1992)

    Google Scholar 

  66. S. Ge, M. Tress, K. Xing, P.-F. Cao, T. Saito, A.P. Sokolov, unpublished (2019).

  67. E.B. Stukalin, L.-H. Cai, N.A. Kumar, L. Leibler, M. Rubinstein, Macromolecules 46, 7525 (2013)

    ADS  Google Scholar 

  68. J.H.K.K. Hirschberg, F.H. Beijer, H.A. van Aert, P.C.M.M. Magusin, R.P. Sijbesma, E.W. Meijer, Macromolecules 32, 2696 (1999)

    ADS  Google Scholar 

  69. S. Chen, D. Döhler, W.H. Binder, Polymer 107, 466 (2016)

    Google Scholar 

  70. A. Jangizehia, S.R. Ghaffariana, G. Nikravana, S. Jamalpour, Thermochim. Acta 661, 34 (2018)

    Google Scholar 

  71. A.N. Semenov, M. Rubinstein, Macromolecules 35, 4821 (2002)

    ADS  Google Scholar 

  72. L.M. Espinosa, S. Balog, C. Weder, ACS Macro Lett. 3, 540 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Tress or Alexei Sokolov.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tress, M., Xing, K., Ge, S. et al. What dielectric spectroscopy can tell us about supramolecular networks. Eur. Phys. J. E 42, 133 (2019). https://doi.org/10.1140/epje/i2019-11897-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11897-4

Keywords

Navigation