Skip to main content
Log in

Effect of surface-active contaminants on radial thermocapillary flows

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the thermocapillary creeping flow induced by a thermal gradient at the liquid-air interface in the presence of insoluble surfactants (impurities). Convective sweeping of the surfactants causes density inhomogeneities that confers in-plane elastic features to the interface. This mechanism is discussed for radially symmetric temperature fields, in both the deep and shallow water regimes. When mass transport is controlled by convection, it is found that surfactants are depleted from a region whose size is inversely proportional to the interfacial elasticity. Both the concentration and the velocity fields follow power laws at the border of the depleted region. Finally, it is shown that this singular behavior is smeared out when molecular diffusion is accounted for.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L.E. Scriven, Nature 187, 186 (1987)

    Article  ADS  Google Scholar 

  2. V.G. Levich, Physicochemical Hydrodynamics (Prentice Hall, 1962)

  3. S.H. Davis, Annu. Rev. Fluid Mech. 19, 403 (1987)

    Article  ADS  Google Scholar 

  4. G. Van der Mensbrugghe, Mem. Cour. Acad. R. Sci. Belg. 34, 1 (1869)

    Google Scholar 

  5. K. Sefiane, C.A. Ward, Adv. Colloid Interface Sci. 134-135, 201 (2007)

    Article  Google Scholar 

  6. A. Karbalaei, R. Kumar, H.J. Cho, Micromachines 7, 13 (2016)

    Article  Google Scholar 

  7. R. Muruganathan, Y. Zhang, T.M. Fischer, J. Am. Chem. Soc. 128, 3474 (2006)

    Article  Google Scholar 

  8. C.N. Baroud, M.R. de Saint-Vincent, J.-P. Delville, Lab Chip 7, 1029 (2007)

    Article  Google Scholar 

  9. B. Pottier, C. Frétigny, L. Talini, Phys. Rev. Lett. 114, 227801 (2015)

    Article  ADS  Google Scholar 

  10. C. Maggi, F. Saglimbeni, M. Dipalo, F. De Angelis, R. Di Leonardo, Nat. Commun. 6, 7855 (2015)

    Article  ADS  Google Scholar 

  11. A. Girot, N. Danné, A. Würger, T. Bickel, F. Ren, J.-C. Loudet, B. Pouligny, Langmuir 32, 2687 (2016)

    Article  Google Scholar 

  12. M.-C. Zhong, Z.-Q. Wang, Y.-M. Li, Opt. Express 25, 2481 (2017)

    Article  ADS  Google Scholar 

  13. I.K. Bratukhin, L.N. Maurin, J. Appl. Math. Mech. 31, 605 (1967)

    Article  Google Scholar 

  14. R.V. Birikh, V.A. Briskman, M.G. Velarde, J.-C. Legros, Liquid Interfacial Systems (Marcel Dekker, 2003)

  15. A. Ito, S.K. Choudhury, T. Fukano, JSME Int. J. -- Ser. II 33, 128 (1990)

    ADS  Google Scholar 

  16. T.-C. Wu, Y.-M. Yang, J.-R. Maa, Int. Commun. Heat Mass Transfer 27, 655 (2000)

    Article  Google Scholar 

  17. T.-C. Wu, Y.-M. Yang, J.-R. Maa, Int. Commun. Heat Mass Transfer 28, 357 (2001)

    Article  Google Scholar 

  18. E. Favre, L. Blumenfeld, F. Daviaud, Phys. Fluids 9, 1473 (1997)

    Article  ADS  Google Scholar 

  19. A. Mizev, Phys. Fluids 17, 122107 (2005)

    Article  ADS  Google Scholar 

  20. V. Shtern, F. Hussain, J. Fluid Mech. 256, 535 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  21. J.C. Berg, A. Acrivos, Chem. Eng. Sci. 20, 737 (1965)

    Article  Google Scholar 

  22. C. Ybert, J.-M. di Meglio, Eur. Phys. J. E 3, 143 (2000)

    Article  Google Scholar 

  23. G.M. Homsy, E. Meiburg, J. Fluid Mech. 139, 443 (1984)

    Article  ADS  Google Scholar 

  24. B. Carpenter, G.M. Homsy, J. Fluid Mech. 155, 429 (1985)

    Article  ADS  Google Scholar 

  25. A. Shmyrov, A. Mizev, V. Demin, M. Petukhov, D. Bratsun, Adv. Colloid Interface Sci. 225, 10 (2018)

    Article  Google Scholar 

  26. Z. Khattari, P. Steffen, T.M. Fischer, J. Phys.: Condens. Matter 14, 4823 (2002)

    ADS  Google Scholar 

  27. S. Das, S. mandal, S.K. Som, S. Chakraborty, Phys. Fluids 29, 012002 (2017)

    Article  ADS  Google Scholar 

  28. A. Srivastava, N. Tiwari, Eur. Phys. J. E 41, 56 (2018)

    Article  Google Scholar 

  29. P.A. Kralchevsky, K.D. Danov, N.D. Denkov, Chemical Physics of Colloid Systems and Interfaces, in Handbook of Surface and Colloid Chemistry (CRC Press, 2015)

  30. T. Bickel, Soft Matter 15, 3644 (2019)

    Article  ADS  Google Scholar 

  31. A. Würger, J. Fluid Mech. 752, 589 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Piessens, The Hankel Transform, in Transforms and Applications Handbook (CRC Press, 2010)

  33. H. Chraibi, J.-P. Delville, Phys. Fluids 24, 032102 (2012)

    Article  ADS  Google Scholar 

  34. T. Bickel, Phys. Rev. E 75, 041403 (2007)

    Article  ADS  Google Scholar 

  35. I.N. Sneddon, Mixed Boundary Value Problems in Potential Theory (J. Wiley & Sons, 1966)

  36. D.G. Duffy, Mixed Boundary Value Problems (Chapman & Hall/CRC, 2008).

  37. M.L. Cordero, E. Verneuil, F. Gallaire, C.N. Baroud, Phys. Rev. E 79, 011201 (2009)

    Article  ADS  Google Scholar 

  38. D. Rivière, B. Selva, H. Chraibi, U. Delabre, J.-P. Delville, Phys. Rev. E 93, 023112 (2016)

    Article  ADS  Google Scholar 

  39. M. Robert de Saint Vincent, J.-P. Delville, Phys. Rev. Fluids 1, 043901 (2016)

    Article  ADS  Google Scholar 

  40. N. Kavokine, M. Anyfantakis, M. Morel, S. Rudiuk, T. Bickel, D. Baigl, Angew. Chem. Int. Ed. 55, 11183 (2016)

    Article  Google Scholar 

  41. R. Leite Pinto, S. Le Roux, I. Cantat, A. Saint-Jalmes, Phys. Rev. Fluids 3, 024003 (2018)

    Article  ADS  Google Scholar 

  42. R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009)

    Article  ADS  Google Scholar 

  43. T. Bickel, J.-C. Loudet, G. Koleski, B. Pouligny, arXiv:1909.13540 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bickel.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bickel, T. Effect of surface-active contaminants on radial thermocapillary flows. Eur. Phys. J. E 42, 131 (2019). https://doi.org/10.1140/epje/i2019-11896-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11896-5

Keywords

Navigation