Skip to main content

Advertisement

Log in

Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We developed a framework to study brain dynamics under cognition. In particular, we investigated the spatiotemporal properties of brain state switches under cognition. The lack of electroencephalography stationarity is exploited as one of the signatures of the metastability of brain states. We correlated power law exponents in the variables that we proposed to describe brain states, and dynamical properties of non-stationarities with cognitive conditions. This framework was successfully tested with three different datasets: a working memory dataset, an Alzheimer disease dataset, and an emotions dataset. We discuss the temporal organization of switches between states, providing evidence suggesting the need to reconsider the piecewise model, in which switches appear at discrete times. Instead, we propose a more dynamically rich view, in which besides the seemingly discrete switches, switches between neighbouring states occur all the time. These micro switches are not (physical) noise, as their properties are also affected by cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Neurons functionally coupled, that spike at a constant delay

  2. The EEG time series have been detrended via high pass filtering, therefore we do not estimate the mean. In addition, an ensemble of identical brains is evidently an impossibility, therefore, by taking a time window, we assume that the process generating the signal is ergodic.

  3. Instead of modelling individual neurons, the mean-field approach considers the activity of space averaged cortical patches. These models are expected to reproduce properties observed in space-averaged brain imaging techniques, such as EEG, MRI or MEG.

References

  • Agarwal R, Gotman J (1999) Adaptive segmentation of electroencephalographic data using a nonlinear energy operator. In: Proceedings of the 1999 IEEE international symposium on circuits and systems, 1999. ISCAS’99, vol 4. IEEE, pp 199–202

  • Ahern GL, Schwartz GE (1979) Differential lateralization for positive versus negative emotion. Neuropsychologia 17(6):693–698

    Article  CAS  PubMed  Google Scholar 

  • Azami H, Hassanpour H, Escudero J, Sanei S (2015) An intelligent approach for variable size segmentation of non-stationary signals. J Adv Res 6(5):687–698

    Article  PubMed  Google Scholar 

  • Barlow JS (1985) Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: a comparative review. J Clin Neurophys 2(3):267–304

    Article  CAS  Google Scholar 

  • Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7(6):1129–1159

    Article  CAS  PubMed  Google Scholar 

  • Bressler SL, Kelso J (2016) Coordination dynamics in cognitive neuroscience. Front Neurosci 10:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G (2006) Rhythms of the brain. Oxford University Press, Oxford

    Book  Google Scholar 

  • Cao C, Slobounov S (2011) Application of a novel measure of EEG non-stationarity as ‘shannon-entropy of the peak frequency shifting’for detecting residual abnormalities in concussed individuals. Clin Neurophysiol 122(7):1314–1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang L, Tsao DY (2017) The code for facial identity in the primate brain. Cell 169(6):1013–1028

    Article  CAS  PubMed  Google Scholar 

  • Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2001) Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2(3):261–296

    Article  Google Scholar 

  • Fingelkurts AA, Fingelkurts AA (2006) Timing in cognition and EEG brain dynamics: discreteness versus continuity. Cogn Process 7(3):135–162

    Article  PubMed  Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188

    Article  Google Scholar 

  • Fitousi D (2018) Feature binding in visual short term memory: a general recognition theory analysis. Psychon Bull Rev 25(3):1104–1113

    Article  PubMed  Google Scholar 

  • Florian G, Pfurtscheller G (1995) Dynamic spectral analysis of event-related EEG data. Electroencephalogr Clin Neurophysiol 95(5):393–396

    Article  CAS  PubMed  Google Scholar 

  • Freeman WJ, Holmes MD (2005) Metastability, instability, and state transition in neocortex. Neural Netw 18(5):497–504

    Article  PubMed  Google Scholar 

  • Freeman WJ, Kozma R (2010) Freeman’s mass action. Scholarpedia 5(1):8040

    Article  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Harmon-Jones E, Allen JJ (1998) Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Personal Soc psychol 74(5):1310

    Article  CAS  Google Scholar 

  • Hazarika N, Chen JZ, Tsoi AC, Sergejew A (1997) Classification of EEG signals using the wavelet transform. In: 1997 13th international conference on digital signal processing proceedings, 1997. DSP 97, vol 1. IEEE, pp 89–92

  • Huang C, Wahlund L-O, Dierks T, Julin P, Winblad B, Jelic V (2000) Discrimination of alzheimer’s disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study. Clin Neurophysiol 111(11):1961–1967

    Article  CAS  PubMed  Google Scholar 

  • Kaplan AY, Fingelkurts AA, Fingelkurts AA, Borisov SV, Darkhovsky BS (2005) Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges. Signal Process 85(11):2190–2212

    Article  Google Scholar 

  • Kelso JS (2012) Multistability and metastability: understanding dynamic coordination in the brain. Philos Trans R Soc B 367(1591):906–918

    Article  Google Scholar 

  • Khalfa S, Schon D, Anton J-L, Liégeois-Chauvel C (2005) Brain regions involved in the recognition of happiness and sadness in music. Neuroreport 16(18):1981–1984

    Article  PubMed  Google Scholar 

  • Klonowski W (2009) Everything you wanted to ask about EEG but were afraid to get the right answer. Nonlinear Biomed Phys 3(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  • Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31

    Article  Google Scholar 

  • Kondo HM, van Loon AM, Kawahara J-I, Moore BC (2017) Auditory and visual scene analysis: an overview. Philos Trans R Soc Lond B Biol Sci 372(1714):20160099

    Article  PubMed  PubMed Central  Google Scholar 

  • König T, Kochi K, Lehmann D (1998) Event-related electric microstates of the brain differ between words with visual and abstract meaning. Electroencephalogr Clin Neurophysiol 106(6):535–546

    Article  Google Scholar 

  • Kozma R, Freeman WJ (2017) Cinematic operation of the cerebral cortex interpreted via critical transitions in self-organized dynamic systems. Front Syst Neurosci 11:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreuzer M, Kochs EF, Schneider G, Jordan D (2014) Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring. J Clin Monit Comput 28(6):573–580

    Article  PubMed  Google Scholar 

  • Krystal AD, Prado R, West M (1999) New methods of time series analysis of non-stationary EEG data: eigenstructure decompositions of time varying autoregressions. Clin Neurophysiol 110(12):2197–2206

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31(5):439–449

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D (1990) Brain electric microstates and cognition: the atoms of thought. In: Machinery of the mind. Springer, pp 209–224

  • Lehmann D, Koenig T, Henggeler B, Strik W, Kochi K, Koukkou M, Pascual-Marqui R (2004) Brain areas activated during electric microstates of mental imagery versus abstract thinking. Klinische Neurophysiol 35(03):160

    Google Scholar 

  • Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD (2016) The functional significance of EEG microstates—associations with modalities of thinking. Neuroimage 125:643–656

    Article  CAS  PubMed  Google Scholar 

  • Miramontes O, Rohani P (2002) Estimating 1/f \(\alpha\) scaling exponents from short time-series. Physica D Nonlinear Phenom 166(3):147–154

    Article  CAS  Google Scholar 

  • Mora-Sánchez A, Gaume A, Dreyfus G, Vialatte F-B (2015) A cognitive brain–computer interface prototype for the continuous monitoring of visual working memory load. In: 2015 IEEE 25th international workshop on machine learning for signal processing (MLSP). IEEE, pp 1–5

  • Newman ME (2005) Power laws, pareto distributions and zipf’s law. Contemp Phys 46(5):323–351

    Article  Google Scholar 

  • Petitmengin C, Lachaux J-P (2013) Microcognitive science: bridging experiential and neuronal microdynamics. Front Hum Neurosci 7:617

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinz PN, Vitiell MV (1989) Dominant occipital (alpha) rhythm frequency in early stage alzheimer’s disease and depression. Electroencephalogr Clin Neurophysiol 73(5):427–432

    Article  CAS  PubMed  Google Scholar 

  • Robertson LC (2003) Binding, spatial attention and perceptual awareness. Nat Rev Neurosci 4(2):93–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz Y, Pockett S, Freeman WJ, Gonzalez E, Li G (2010) A method to study global spatial patterns related to sensory perception in scalp EEG. J Neurosci Methods 191(1):110–118

    Article  PubMed  Google Scholar 

  • Schneegans S, Bays PM (2017) Neural architecture for feature binding in visual working memory. J Neurosci 37(14):3913–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiter-Gasser U, Gasser T, Ziegler P (1993) Quantitative EEG analysis in early onset alzheimer’s disease: a controlled study. Electroencephalogr Clin Neurophysiol 86(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Lee S, Ahn M, Cho H, Jun SC, Lee H-N (2015) Noise robustness analysis of sparse representation based classification method for non-stationary EEG signal classification. Biomed Signal Process Control 21:8–18

    Article  Google Scholar 

  • Spivey M (2008) The continuity of mind. Oxford University Press, Oxford

    Google Scholar 

  • Steyn-Ross ML, Steyn-Ross DA, Wilson MT, Sleigh JW (2009) Modeling brain activation patterns for the default and cognitive states. NeuroImage 45(2):298–311

    Article  PubMed  Google Scholar 

  • Strelets V, Faber P, Golikova J, Novototsky-Vlasov V, König T, Gianotti L, Gruzelier J, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiol 114(11):2043–2051

    Article  CAS  PubMed  Google Scholar 

  • Strik W, Dierks T, Becker T, Lehmann D (1995) Larger topographical variance and decreased duration of brain electric microstates in depression. J Neural Transm Gen Sect JNT 99(1–3):213–222

    Article  CAS  Google Scholar 

  • Taraborelli D (2002) Feature binding and object perception. Does object awareness require feature conjunction? In: European society for philosophy and psychology 2002

  • Tognoli E, Kelso JS (2014) The metastable brain. Neuron 81(1):35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treisman A (1996) The binding problem. Curr Opin Neurobiol 6(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Treisman A (1998) Feature binding, attention and object perception. Philos Trans R Soc Lond B Biol Sci 353(1373):1295–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vialatte F, Cichocki A, Dreyfus G, Musha T, Rutkowski TM, Gervais R (2005) Blind source separation and sparse bump modelling of time frequency representation of EEG signals: new tools for early detection of Alzheimer’s disease. In: 2005 IEEE workshop on machine learning for signal processing. IEEE, pp 27–32

  • Von Bünau P, Meinecke FC, Király FC, Müller K-R (2009) Finding stationary subspaces in multivariate time series. Phys Rev Lett 103(21):214101

    Article  CAS  Google Scholar 

  • Werner G (2007) Metastability, criticality and phase transitions in brain and its models. Biosystems 90(2):496–508

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Consejo Nacional de Ciencia y Tecnología (Mexican government) Grant (to A.M.-S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Mora-Sánchez.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mora-Sánchez, A., Dreyfus, G. & Vialatte, FB. Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach. Cogn Neurodyn 13, 437–452 (2019). https://doi.org/10.1007/s11571-019-09533-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-019-09533-0

Keywords

Navigation