Skip to main content
Log in

Biochemical and Conformational Characterization of Recombinant VEGFR2 Domain 7

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Angiogenesis is a biological process finely tuned by a plethora of pro- and anti-angiogenic molecules, among which vascular endothelial growth factors (VEGFs). Their biological activity is expressed through the interaction with three cognate receptor tyrosine kinases, VEGFR1, 2, and 3. VEGFR2 is the primary regulator of angiogenesis. Ligand-induced VEGFR2 dimerization and activation depend on direct ligand binding to extracellular domains 2 and 3 of receptor and in the establishment of interactions between proximal membrane domains. VEGFR2 domain 7 has been shown to play a crucial role in receptor dimerization and regulation, therefore, representing a convenient target for the allosteric modulation of VEGFR2 activity. The ability to prepare a functional VEGFR2D7 domain represents the starting point to the development of novel VEGFR2 binders acting as allosteric inhibitors of receptor activity. Here, we describe a robust and efficient procedure for the preparation in E. coli of the VEGFR2 domain 7. The protein was obtained with a good yield and was properly folded. It was investigated in a biochemical and structural study, providing information on its conformational arrangement and in solution properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

VEGFs:

Vascular endothelial growth factors

VEGFRs:

Vascular endothelial growth factor receptors

RTKs:

Receptor tyrosine kinases

TEMED:

Tetramethylethylenediamine

APS:

Ammonium persulfate

dNTPs:

Deoxynucleotide triphosphates

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

O.D.600 :

Optical density at 600 nm

Ni-NTA resin:

Nickel-charged nitrilotriacetic resin

TEV protease:

Tobacco etch virus protease

EDTA:

Ethylenediaminetetraacetic acid

DTT:

Dithiothreitol

RP-HPLC:

Reversed-phase high-performance liquid chromatography

TFA:

Trifluoroacetic acid

LC–MS:

Liquid chromatography–mass spectrometry

Trp:

Tryptophan

DSS:

4,4-Dimethyl-4-silapentane-1-sulfonic acid

References

  1. Patel-Hett, S., & D’Amore, P. A. (2011). Signal transduction in vasculogenesis and developmental angiogenesis. The International Journal of Developmental Biology, 55, 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ribatti, D. (2008). Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis, 11, 3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9, 653–660.

    Article  CAS  PubMed  Google Scholar 

  4. Shibuya, M. (2014). VEGF-VEGFR signals in health and disease. Biomolecules & Therapeutics, 22, 1–9.

    Article  CAS  Google Scholar 

  5. Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling-in control of vascular function. Nature Reviews Molecular Cell Biology, 7, 359–371.

    Article  CAS  PubMed  Google Scholar 

  6. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of Cell Biology, 161, 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahashi, H., & Shibuya, M. (2005). The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical Science, 109, 227–241.

    Article  CAS  PubMed  Google Scholar 

  8. Lania, G., Ferrentino, R., & Baldini, A. (2015). TBX1 represses Vegfr2 gene expression and enhances the cardiac fate of VEGFR2+ cells. PLoS ONE, 10, e0138525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Smith, N. R., Baker, D., James, N. H., Ratcliffe, K., Jenkins, M., Ashton, S. E., et al. (2010). Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 16, 3548–3561.

    Article  CAS  Google Scholar 

  10. Yamagishi, N., Teshima-Kondo, S., Masuda, K., Nishida, K., Kuwano, Y., Dang, D. T., et al. (2013). Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells. BMC Cancer, 13, 229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee, S., Heukamp, L. C., Siobal, M., Schottle, J., Wieczorek, C., Peifer, M., et al. (2013). Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. The Journal of Clinical Investigation, 123, 1732–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruch, C., Skiniotis, G., Steinmetz, M. O., Walz, T., & Ballmer-Hofer, K. (2007). Structure of a VEGF-VEGF receptor complex determined by electron microscopy. Nature Structural & Molecular Biology, 14, 249–250.

    Article  CAS  Google Scholar 

  13. Kisko, K., Brozzo, M. S., Missimer, J., Schleier, T., Menzel, A., Leppanen, V. M., et al. (2011). Structural analysis of vascular endothelial growth factor receptor-2/ligand complexes by small-angle X-ray solution scattering. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 25, 2980–2986.

    Article  CAS  Google Scholar 

  14. Shinkai, A., Ito, M., Anazawa, H., Yamaguchi, S., Shitara, K., & Shibuya, M. (1998). Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. The Journal of Biological Chemistry, 273, 31283–31288.

    Article  CAS  PubMed  Google Scholar 

  15. Dosch, D. D., & Ballmer-Hofer, K. (2010). Transmembrane domain-mediated orientation of receptor monomers in active VEGFR-2 dimers. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 24, 32–38.

    Article  CAS  Google Scholar 

  16. Brozzo, M. S., Bjelic, S., Kisko, K., Schleier, T., Leppanen, V. M., Alitalo, K., et al. (2012). Thermodynamic and structural description of allosterically regulated VEGFR-2 dimerization. Blood, 119, 1781–1788.

    Article  CAS  PubMed  Google Scholar 

  17. Hyde, C. A., Giese, A., Stuttfeld, E., Abram, Saliba J., Villemagne, D., Schleier, T., et al. (2012). Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites. Molecular and Cellular Biology, 32, 3802–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang, Y., Xie, P., Opatowsky, Y., & Schlessinger, J. (2010). Direct contacts between extracellular membrane-proximal domains are required for VEGF receptor activation and cell signaling. Proceedings of the National academy of Sciences of the United States of America, 107, 1906–1911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarabipour, S., Ballmer-Hofer, K., & Hristova, K. (2016). VEGFR-2 conformational switch in response to ligand binding. eLife, 5, e13876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thieltges, K. M., Avramovic, D., Piscitelli, C. L., Markovic-Mueller, S., Binz, H. K., & Ballmer-Hofer, K. (2018). Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling. Angiogenesis, 21, 533–543.

    Article  CAS  PubMed  Google Scholar 

  21. Ellis L. M. (2005). Bevacizumab. Nature Reviews Drug Discovery, Suppl S8–9.

    Article  Google Scholar 

  22. Krupitskaya, Y., & Wakelee, H. A. (2009). Ramucirumab a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Current Opinion in Investigational Drugs, 10, 597–605.

    CAS  PubMed  Google Scholar 

  23. D’Andrea, L. D., Del Gatto, A., De Rosa, L., Romanelli, A., & Pedone, C. (2009). Peptides targeting angiogenesis related growth factor receptors. Current Pharmaceutical Design, 15, 2414–2429.

    Article  PubMed  Google Scholar 

  24. Feng, S., Zou, L., Ni, Q., Zhang, X., Li, Q., Zheng, L., et al. (2014). Modulation, bioinformatic screening, and assessment of small molecular peptides targeting the vascular endothelial growth factor receptor. Cell Biochemistry and Biophysics, 70, 1913–1921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Stasi, R., De Rosa, L., Romanelli, A., & D’Andrea, L. D. (2016). Peptides interacting with growth factor receptors regulating angiogenesis. Frontiers in Medicinal Chemistry, 9, 103–160.

    Article  Google Scholar 

  26. De Rosa, L., Di Stasi, R., & D’Andrea, L. D. (2018). Pro-angiogenic peptides in biomedicine. Archives of Biochemistry and Biophysics, 660, 72–86.

    Article  PubMed  CAS  Google Scholar 

  27. D’Andrea, L. D., Romanelli, A., Di Stasi, R., & Pedone, C. (2010). Bioinorganic aspects of angiogenesis. Dalton Transactions, 39, 7625–7636.

    Article  PubMed  CAS  Google Scholar 

  28. D’Andrea, L. D., De Rosa, L., Vigliotti, C., & Cataldi, M. (2017). VEGF mimic peptides: Potential applications in central nervous system therapeutics. New Horizons in Translational Medicine, 3, 233–251.

    Google Scholar 

  29. Mendel, D. B., Laird, A. D., Xin, X., Louie, S. G., Christensen, J. G., Li, G., et al. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 9, 327–337.

    CAS  Google Scholar 

  30. Kendrew, J., Eberlein, C., Hedberg, B., McDaid, K., Smith, N. R., Weir, H. M., et al. (2011). An antibody targeted to VEGFR-2 Ig domains 4–7 inhibits VEGFR-2 activation and VEGFR-2-dependent angiogenesis without affecting ligand binding. Molecular Cancer Therapeutics, 10, 770–783.

    Article  CAS  PubMed  Google Scholar 

  31. Di Stasi, R., De Rosa, L., Diana, D., Fattorusso, R., & D’Andrea, L. D. (2019). Human recombinant VEGFR2D4 biochemical characterization to investigate novel anti-VEGFR2D4 antibodies for allosteric targeting of VEGFR2. Molecular Biotechnology, 61, 513–520.

    Article  PubMed  CAS  Google Scholar 

  32. Keunen, O., Johansson, M., Oudin, A., Sanzey, M., Rahim, S. A., Fack, F., et al. (2011). Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proceedings of the National academy of Sciences of the United States of America, 108, 3749–3754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chung, A. S., Kowanetz, M., Wu, X., Zhuang, G., Ngu, H., Finkle, D., et al. (2012). Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. The Journal of Pathology, 227, 404–416.

    Article  CAS  PubMed  Google Scholar 

  34. Di Stasi, R., Diana, D., Capasso, D., Palumbo, R., Romanelli, A., Pedone, C., et al. (2010). VEGFR1(D2) in drug discovery: Expression and molecular characterization. Biopolymers, 94, 800–809.

    Article  PubMed  CAS  Google Scholar 

  35. Provencher, S. W., & Glockner, J. (1981). Estimation of globular protein secondary structure from circular dichroism. Biochemistry, 20, 33–37.

    Article  CAS  PubMed  Google Scholar 

  36. Manavalan, P., & Johnson, W. C., Jr. (1987). Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Analytical Biochemistry, 167, 76–85.

    Article  CAS  PubMed  Google Scholar 

  37. Sreerama, N., & Woody, R. W. (2000). Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Analytical Biochemistry, 287, 252–260.

    Article  CAS  PubMed  Google Scholar 

  38. Hwang, T. L., & Shaka, A. J. (1995). Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. Journal of Magnetic Resonance Series A, 112, 275–279.

    Article  CAS  Google Scholar 

  39. Dalvit, C. (1998). Efficient multiple-solvent suppression for the study of the interactions of organic solvents with biomolecules. Journal of Biomolecular NMR, 11, 437–444.

    Article  CAS  Google Scholar 

  40. Goddard, T. D., & Kneller, D. G. (2004). SPARKY 3. California: University of San Francisco.

    Google Scholar 

  41. Keller, R. L. J. (2004). The computer aided resonance assignement tutorial. Newport Beach: CANTINA.

    Google Scholar 

  42. Morris, K. F., & Jr, Johnson C. S. (1992). Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. Journal of the American Chemical Society, 114, 3139–3141.

    Article  CAS  Google Scholar 

  43. Price, W. S., Nara, M., & Arata, Y. (1997). A pulsed field gradient NMR study of the aggregation and hydration of parvalbumin. Biophysical Chemistry, 65, 179–187.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia de la Torre, J., Huertas, M. L., & Carrasco, B. (2000). HYDRONMR: Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. Journal of Magnetic Resonance, 147, 138–146.

    Article  CAS  PubMed  Google Scholar 

  45. Chemes, L. B., Alonso, L. G., Noval, M. G., & de Prat-Gay, G. (2012). Circular dichroism techniques for the analysis of intrinsically disordered proteins and domains. Methods in Molecular Biology, 895, 387–404.

    Article  CAS  PubMed  Google Scholar 

  46. Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1, 2876–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, Y., & Barkley, M. D. (1998). Toward understanding tryptophan fluorescence in proteins. Biochemistry, 37, 9976–9982.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Y., Zhang, Y., Cao, Z., Ji, H., Yang, X., Iwamoto, H., et al. (2013). Anti-VEGF- and anti-VEGF receptor-induced vascular alteration in mouse healthy tissues. Proceedings of the National academy of Sciences of the United States of America, 110, 12018–12023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gautier, B., Goncalves, V., Diana, D., Di Stasi, R., Teillet, F., Lenoir, C., et al. (2010). Biochemical and structural analysis of the binding determinants of a vascular endothelial growth factor receptor peptidic antagonist. Journal of Medicinal Chemistry, 53, 4428–4440.

    Article  CAS  PubMed  Google Scholar 

  50. Basile, A., Del Gatto, A., Diana, D., Di Stasi, R., Falco, A., Festa, M., et al. (2011). Characterization of a designed vascular endothelial growth factor receptor antagonist helical peptide with antiangiogenic activity in vivo. Journal of Medicinal Chemistry, 54, 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  51. De Rosa, L., Diana, D., Basile, A., Russomanno, A., Isernia, C., Turco, M. C., et al. (2014). Design, structural and biological characterization of a VEGF inhibitor beta-hairpin-constrained peptide. European Journal of Medicinal Chemistry, 73, 210–216.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, L., Coric, P., Broussy, S., Di Stasi, R., Zhou, L., D’Andrea, L. D., et al. (2019). Structural studies of the binding of an antagonistic cyclic peptide to the VEGFR1 domain 2. European Journal of Medicinal Chemistry, 169, 65–75.

    Article  CAS  PubMed  Google Scholar 

  53. Ruegg, C., Hasmim, M., Lejeune, F. J., & Alghisi, G. C. (2006). Antiangiogenic peptides and proteins: From experimental tools to clinical drugs. Biochimica et Biophysica Acta, 1765, 155–177.

    PubMed  Google Scholar 

  54. Sulochana, K. N., & Ge, R. (2007). Developing antiangiogenic peptide drugs for angiogenesis-related diseases. Current Pharmaceutical Design, 13, 2074–2086.

    Article  CAS  PubMed  Google Scholar 

  55. Wilkins, D. K., Grimshaw, S. B., Receveur, V., Dobson, C. M., Jones, J. A., & Smith, L. J. (1999). Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry, 38, 16424–16431.

    Article  CAS  PubMed  Google Scholar 

  56. Clarke, J., Cota, E., Fowler, S. B., & Hamill, S. J. (1999). Folding studies of immunoglobulin-like beta-sandwich proteins suggest that they share a common folding pathway. Structure, 7, 1145–1153.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LDR is supported by Fondazione Umberto Veronesi-Post-Doctoral Fellowship 2019. We would like to thank Mr Leopoldo Zona for technical assistance and Dr Luigi Russo for skillful help with HYDROPRO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rossella Di Stasi or Luca D. D’Andrea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Stasi, R., Diana, D., De Rosa, L. et al. Biochemical and Conformational Characterization of Recombinant VEGFR2 Domain 7. Mol Biotechnol 61, 860–872 (2019). https://doi.org/10.1007/s12033-019-00211-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00211-4

Keywords

Navigation