Skip to main content

Advertisement

Log in

Real-time transfer of lentiviral particles by producer cells using an engineered coculture system

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Lentiviruses are quite effective gene delivery systems for stable production of genetically engineered human cells. However, prior to using lentivirus to deliver genetic materials to cells of interest, the normal course of production of these lentiviruses involves a lengthy collection, purification, preservation, and quantification process. In this report, we demonstrate the ability for producer HEK293T cells to simultaneously produce lentiviral particles and transduce (i.e., infect) target cells through a membrane-based coculture system in a continuous, real-time mode which negates the need for a separate viral collection and quantification process. The coculture system was evaluated for major design features such as variations in HEK293T seeding density, target cell type densities, as well as membrane porosities to identify key relationships between lentiviral particle production rate and infection kinetics for adherent and suspension cell types. As a proof-of-concept for the creation of an engineered cell immunotherapy, we describe the ability to engineer human T cells isolated from PBMCs under the control of this coculture system in under 6 days with a GFP construct. These studies suggest the capability to combine and more closely automate the transfection/transduction process in order to facilitate well-timed and cost-effective transduction of target cell types. These experiments provide novel insight into the forthcoming transition into improved manufacturing systems for viral production and subsequent cell engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C et al (2013) Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341:1233151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ausubel L, Hall C, Sharma A et al (2012) Production of CGMP-grade lentiviral vectors. Bioprocess Int 10:32–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandeira V, Peixoto C, Rodrigues AF, Cruz PE, Alves PM, Coroadinha AS, Carrondo MJ (2012) Downstream processing of lentiviral vectors: releasing bottlenecks. Hum Gene Ther Methods 23:255–263

    Article  CAS  PubMed  Google Scholar 

  • Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T et al (2013) Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 341:1233158

    Article  CAS  PubMed  Google Scholar 

  • Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326:818–823

    Article  CAS  PubMed  Google Scholar 

  • Cribbs A, Kennedy A, Gregory B, Brennan F (2013) Simplified production and concentration of lentiviral vectors to achieve high transduction in primary human T cells. BMC Biotechnol 13:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durand S, Cimarelli A (2011) The inside out of lentiviral vectors. Viruses 3:132–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farley DC, Iqball S, Smith JC, Miskin JE, Kingsman SM, Mitrophanous KA (2007) Factors that influence VSV-G pseudotyping and transduction efficiency of lentiviral vectors-in vitro and in vivo implications. J Gene Med 9:345–356

    Article  CAS  PubMed  Google Scholar 

  • Gandara C, Affleck V, Stoll EA (2018) Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Methods 29:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R (2006) Comparision of lentiviral vector titration methods. BMC Biotechnol 6:34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germeraad WT, Asami N, Fujimoto S, Mazda O, Katsura Y (1994) Efficient retrovirus-mediated gene transduction into murine hematopoietic stem cells and long-lasting expression using a transwell coculture system. Blood 84:780–788

    Article  CAS  PubMed  Google Scholar 

  • Hacein-Bey-Abina S, Pai SY, Gaspar HB, Armant M, Berry CC, Blanche S, Bleesing J, Blondeau J, de Boer H, Buckland KF et al (2014) A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med 371:1407–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashikawa F, Chang L (2001) Kinetic analyses of stability of simple and complex retroviral vectors. Virology 280:124–131

    Article  CAS  PubMed  Google Scholar 

  • Kumru O, Wang Y, Gombotz C, Wayne R, Kelley-Clarke B et al (2018) Physical characterization and stabilization of a lentiviral vector against adsorption and freeze–thaw. Pharm Biotechnol 107:2764–2774

    CAS  Google Scholar 

  • McCarron A, Donnelley M, McIntyre C, Parsons D (2016) Challenges of up-scaling lentivirus production and processing. J Biotechnol 240:23–30

    Article  CAS  PubMed  Google Scholar 

  • Merten O, Wright JF (2016) Towards routine manufacturing of gene therapy drugs. Mol Ther Methods Clin Dev 3:16021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merten O, Charrier S, Laroudie N et al (2010) Large-scale manufacture and characterization of a lentiviral vector produced for clinical ex vivo gene therapy application. Hum Gene Ther 22:343–356

    Article  CAS  Google Scholar 

  • Merten O, Hebben M, Bovolenta C (2016) Production of lentiviral vectors. Mol Ther Methods Clin Dev 3:16017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milone M, O’Doherty U (2018) Clincal use of lentiviral vectors. Leukemia 32:1529–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Thrasher AJ (2013) Gene therapy for PIDs: progress, pitfalls and prospects. Gene 525:174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasri M, Karimi A, Farsani MA (2014) Production, purification and titration of a lentivirus-based vector for gene delivery purposes. Cytotechnology 66:1031–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintarelli C, Locatelli F, Caruana I, Angelis BD (2016) Overcoming challenges in CAR T-cell product CGMP release. Mol Ther 24:845–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Taylor J, Clack B, Stewart RS, Canterberry SC (2013) Effects of storage conditions on the morphology and titer of lentiviral vectors. Faculty Publications. 94

  • Rogers GL, Herzog RW (2015) Gene therapy for hemophilia. Front Biosci 20:556–603

    Article  CAS  Google Scholar 

  • Rout-Pitt N, McCarron A, McIntyre C, Parsons D, Donnelley M (2018) Large-scale production of lentiviral vectors using multilayer cell factories. J Biol Methods 5:90

    Article  Google Scholar 

  • Segura MM, Kamen A, Garnier A (2006) Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnol Adv 24:321–337

    Article  CAS  PubMed  Google Scholar 

  • Sheu J, Beltzer J, Fury B, Wilczek K, Tobin S, Falconer D, Nolta J, Bauer G (2015) Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor. Mol Ther Methods Clin Dev 2:15020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White M, Whittaker R, Gándara C, Stoll EA (2017) A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum Gene Ther Methods 28:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health Grants (R01GM127353 and R01EB012521).

Author information

Authors and Affiliations

Authors

Contributions

LMT and BP formulated the research study design, LMT conducted experiments, acquired data, analyzed data, wrote manuscript. RP assisted in conducting experiments and acquiring data. MT assisted in conducting experiments.

Corresponding author

Correspondence to Biju Parekkadan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5075 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmins, L.M., Patel, R.S., Teryek, M.S. et al. Real-time transfer of lentiviral particles by producer cells using an engineered coculture system. Cytotechnology 71, 1019–1031 (2019). https://doi.org/10.1007/s10616-019-00343-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00343-0

Keywords

Navigation