Skip to main content

Advertisement

Log in

Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR–G Protein Complexes and the Role of Hypoxia

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

G protein-coupled receptors (GPCRs) play a pivotal role in the adaptive responses to cellular stresses such as hypoxia. In addition to influencing cellular gene expression profiles, hypoxic microenvironments can perturb membrane protein localization, altering GPCR effector scaffolding and altering downstream signaling. Studies using proteomics approaches have revealed significant regulation of GPCR and G proteins by their state of post-translational modification. The aim of this review is to examine the effects of post-translational modifications on membrane localization and signaling of GPCR–G protein complexes, with an emphasis on vascular prostanoid receptors, and to highlight what is known about the effect of cellular hypoxia on these mechanisms. Understanding post-translational modifications of protein targets will help to define GPCR targets in treatment of disease, and to inform research into mechanisms of hypoxic cellular responses.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adam L, Bouvier M et al (1999) Nitric oxide modulates beta(2)-adrenergic receptor palmitoylation and signaling. J Biol Chem 274(37):26337–26343

    Article  CAS  PubMed  Google Scholar 

  • Adams JW, Wang J et al (2008) Myocardial expression, signaling, and function of GPR22: a protective role for an orphan G protein-coupled receptor. Am J Physiol Heart Circ Physiol 295(2):H509–H521

    Article  CAS  PubMed  Google Scholar 

  • Adamson P, Marshall CJ et al (1992) Post-translational modifications of p21rho proteins. J Biol Chem 267(28):20033–20038

    CAS  PubMed  Google Scholar 

  • Arnelle DR, Stamler JS (1995) NO+, NO, and NO- donation by S-nitrosothiols: implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys 318(2):279–285

    Article  CAS  PubMed  Google Scholar 

  • Aronstam RS, Martin DC et al (1995) S-nitrosylation of m2 muscarinic receptor thiols disrupts receptor-G-protein coupling. Ann N Y Acad Sci 757:215–217

    Article  CAS  PubMed  Google Scholar 

  • Ashraf QM, Zanelli SA et al (2001) Phosphorylation of Bcl-2 and Bax proteins during hypoxia in newborn piglets. Neurochem Res 26(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Audoly LP, Rocca B et al (2000) Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 101(24):2833–2840

    Article  CAS  PubMed  Google Scholar 

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem J 209(2):331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhar M, Forrester MT et al (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10(10):721–732

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya R, Wedegaertner PB (2000) Galpha 13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding. J Biol Chem 275(20):14992–14999

    Article  CAS  PubMed  Google Scholar 

  • Bizzozero OA, Zheng J (2009) Identification of major S-nitrosylated proteins in murine experimental autoimmune encephalomyelitis. J Neurosci Res 87(13):2881–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black SD (1992) Development of hydrophobicity parameters for prenylated proteins. Biochem Biophys Res Commun 186(3):1437–1442

    Article  CAS  PubMed  Google Scholar 

  • Boie Y, Rushmore TH et al (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J Biol Chem 269(16):12173–12178

    CAS  PubMed  Google Scholar 

  • Boyartchuk VL, Ashby MN et al (1997) Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275(5307):1796–1800

    Article  CAS  PubMed  Google Scholar 

  • Bunting S, Gryglewski R et al (1976) Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac ateries and inhibits platelet aggregation. Prostaglandins 12(6):897–913

    Article  CAS  PubMed  Google Scholar 

  • Cammarata PR, Neelam S et al (2015) Inhibition of hypoxia inducible factor-1alpha downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells. Mol Vis 21:1024–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casey PJ, Fong HK et al (1990) Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 265(4):2383–2390

    CAS  PubMed  Google Scholar 

  • Catrina SB, Botusan IR et al (2006) Hypoxia-inducible factor-1alpha and hypoxia-inducible factor-2alpha are expressed in kaposi sarcoma and modulated by insulin-like growth factor-I. Clin Cancer Res 12(15):4506–4514

    Article  CAS  PubMed  Google Scholar 

  • Cavasotto CN, Orry AJ et al (2003) Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors. Proteins 51(3):423–433

    Article  CAS  PubMed  Google Scholar 

  • Cerychova R, Pavlinkova G (2018) HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne) 9:460

    Article  Google Scholar 

  • Chakraborty R, Sikarwar AS et al (2017) Characterization of GPCR signaling in hypoxia. In: Shukla AK (ed) Methods in cell biology, vol 142. Academic Press, Cambridge, pp 101–110

    Google Scholar 

  • Chapleau CE, White RP (1979) Effects of prostacyclin on the canine isolated basilar artery. Prostaglandins 17(4):573–580

    Article  CAS  PubMed  Google Scholar 

  • Charo IF, Feinman RD et al (1977) Prostaglandin endoperoxides and thromboxane A2 can induce platelet aggregation in the absence of secretion. Nature 269(5623):66–69

    Article  CAS  PubMed  Google Scholar 

  • Chen CA, Manning DR (2000) Regulation of galpha i palmitoylation by activation of the 5-hydroxytryptamine-1A receptor. J Biol Chem 275(31):23516–23522

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Huang B et al (2008a) Acute hypoxia enhances proteins’ S-nitrosylation in endothelial cells. Biochem Biophys Res Commun 377(4):1274–1278

    Article  CAS  PubMed  Google Scholar 

  • Chen SC, Liu YC et al (2008b) Acute hypoxia to endothelial cells induces activating transcription factor 3 (ATF3) expression that is mediated via nitric oxide. Atherosclerosis 201(2):281–288

    Article  CAS  PubMed  Google Scholar 

  • Clapp LH, Finney P et al (2002) Differential effects of stable prostacyclin analogs on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am J Respir Cell Mol Biol 26(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386

    Article  CAS  PubMed  Google Scholar 

  • Coleman RA, Smith WL et al (1994) International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46(2):205–229

    CAS  PubMed  Google Scholar 

  • Conibear E, Davis NG (2010) Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci 123(Pt 23):4007–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crouthamel M, Thiyagarajan MM et al (2008) N-terminal polybasic motifs are required for plasma membrane localization of Galpha(s) and Galpha(q). Cell Signal 20(10):1900–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degtyarev MY, Spiegel AM et al (1993a) The G protein alpha s subunit incorporates [3H]palmitic acid and mutation of cysteine-3 prevents this modification. Biochemistry 32(32):8057–8061

    Article  CAS  PubMed  Google Scholar 

  • Degtyarev MY, Spiegel AM et al (1993b) Increased palmitoylation of the Gs protein alpha subunit after activation by the beta-adrenergic receptor or cholera toxin. J Biol Chem 268(32):23769–23772

    CAS  PubMed  Google Scholar 

  • Degtyarev MY, Spiegel AM et al (1994) Palmitoylation of a G protein alpha i subunit requires membrane localization not myristoylation. J Biol Chem 269(49):30898–30903

    CAS  PubMed  Google Scholar 

  • Delivoria-Papadopoulos M (2012) Mechanism of caspase-9 activation during hypoxia in the cerebral cortex of newborn piglets: the role of Src kinase. Neurosci Lett 523(1):19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diesen DL, Hess DT et al (2008) Hypoxic vasodilation by red blood cells: evidence for an s-nitrosothiol-based signal. Circ Res 103(5):545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan JA, Gilman AG (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem 273(25):15830–15837

    Article  CAS  PubMed  Google Scholar 

  • Dunphy JT, Linder ME (1998) Signalling functions of protein palmitoylation. Biochim Biophys Acta 1436(1–2):245–261

    Article  CAS  PubMed  Google Scholar 

  • Dusting GJ, Moncada S et al (1978) Disappearance of prostacyclin (PGI2) in the circulation of the dog [proceedings]. Br J Pharmacol 62(3):414P–415P

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evanko DS, Thiyagarajan MM et al (2000) Interaction with Gbetagamma is required for membrane targeting and palmitoylation of Galpha(s) and Galpha(q). J Biol Chem 275(2):1327–1336

    Article  CAS  PubMed  Google Scholar 

  • Farazi TA, Waksman G et al (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276(43):39501–39504

    Article  CAS  PubMed  Google Scholar 

  • Farsijani NM, Liu Q et al (2016) Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin. J Clin Investig 126(4):1425–1437

    Article  PubMed  Google Scholar 

  • Fediuk J, Gutsol A et al (2012) Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Am J Physiol Lung Cell Mol Physiol 302(1):L13–L26

    Article  CAS  PubMed  Google Scholar 

  • Fike CD, Pfister SL et al (2002) Cyclooxygenase contracting factors and altered pulmonary vascular responses in chronically hypoxic newborn pigs. J Appl Physiol 92(1):67–74

    Article  CAS  PubMed  Google Scholar 

  • Foley JF, Kelley LP et al (2001) Prostaglandin D(2) receptor-mediated desensitization of the alpha isoform of the human thromboxane A(2) receptor. Biochem Pharmacol 62(2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Galbiati F, Guzzi F et al (1994) N-terminal fatty acylation of the alpha-subunit of the G-protein Gi1: only the myristoylated protein is a substrate for palmitoylation. Biochem J 303(Pt 3):697–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galbiati F, Guzzi F et al (1996) Chemical inhibition of myristoylation of the G-protein Gi1 alpha by 2-hydroxymyristate does not interfere with its palmitoylation or membrane association Evidence that palmitoylation, but not myristoylation, regulates membrane attachment. Biochem J 313(Pt 3):717–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallego C, Gupta SK et al (1992) Myristoylation of the G alpha i2 polypeptide, a G protein alpha subunit, is required for its signaling and transformation functions. Proc Natl Acad Sci USA 89(20):9695–9699

    Article  CAS  PubMed  Google Scholar 

  • Gaston B (2006) Summary: systemic effects of inhaled nitric oxide. Proc Am Thorac Soc 3(2):170–172

    Article  CAS  PubMed  Google Scholar 

  • Gether U (2000) Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 21(1):90–113

    Article  CAS  PubMed  Google Scholar 

  • Goddard AD, Watts A (2012) Regulation of G protein-coupled receptors by palmitoylation and cholesterol. BMC Biol 10:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gow AJ, Farkouh CR et al (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol-Lung Cell Mol Physiol 287(2):L262–L268

    Article  CAS  PubMed  Google Scholar 

  • Gurdal H, Seasholtz TM et al (1997) Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta. Mol Pharmacol 52(6):1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2017) Molecular mechanisms of GPCR signaling: a structural perspective. Int J Mol Sci 18(12):E2519

    Article  PubMed  CAS  Google Scholar 

  • Haase VH (2013) Regulation of erythropoiesis by hypoxia-inducible factors. Blood Rev 27(1):41–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallak H, Brass LF et al (1994) Failure to myristoylate the alpha subunit of Gz is correlated with an inhibition of palmitoylation and membrane attachment, but has no affect on phosphorylation by protein kinase C. J Biol Chem 269(6):4571–4576

    CAS  PubMed  Google Scholar 

  • Hamberg M, Svensson J et al (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72(8):2994–2998

    Article  CAS  PubMed  Google Scholar 

  • Hammarstrom S, Falardeau P (1977) Resolution of prostaglandin endoperoxide synthase and thromboxane synthase of human platelets. Proc Natl Acad Sci USA 74(9):3691–3695

    Article  CAS  PubMed  Google Scholar 

  • Hanasaki K, Nakano T et al (1990) Receptor-mediated mitogenic effect of thromboxane A2 in vascular smooth muscle cells. Biochem Pharmacol 40(11):2535–2542

    Article  CAS  PubMed  Google Scholar 

  • Hancock JF, Paterson H et al (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63(1):133–139

    Article  CAS  PubMed  Google Scholar 

  • Hand AR, Elder KO et al (2015) Redistribution of Galphas in mouse salivary glands following beta-adrenergic stimulation. Arch Oral Biol 60(5):715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison C, Traynor JR (2003) The [35S]GTPgammaS binding assay: approaches and applications in pharmacology. Life Sci 74(4):489–508

    Article  CAS  PubMed  Google Scholar 

  • Hayes JS, Lawler OA et al (1999) The prostacyclin receptor is isoprenylated. Isoprenylation is required for efficient receptor-effector coupling. J Biol Chem 274(34):23707–23718

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Hendriks-Balk MC, Peters SL et al (2008) Regulation of G protein-coupled receptor signalling: focus on the cardiovascular system and regulator of G protein signalling proteins. Eur J Pharmacol 585(2–3):278–291

    Article  CAS  PubMed  Google Scholar 

  • Hermans E (2003) Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 99(1):25–44

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Stamler JS (2012) Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem 287(7):4411–4418

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A et al (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166

    Article  CAS  PubMed  Google Scholar 

  • Higgins JB, Casey PJ (1994) In vitro processing of recombinant G protein gamma subunits. Requirements for assembly of an active beta gamma complex. J Biol Chem 269(12):9067–9073

    CAS  PubMed  Google Scholar 

  • Higgins JB, Casey PJ (1996) The role of prenylation in G-protein assembly and function. Cell Signal 8(6):433–437

    Article  CAS  PubMed  Google Scholar 

  • Hill E, van Der Kaay J et al (2001) The role of dynamin and its binding partners in coated pit invagination and scission. J Cell Biol 152(2):309–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinton M, Mellow L et al (2006) Hypoxia induces hypersensitivity and hyperreactivity to thromboxane receptor agonist in neonatal pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 290(2):L375–L384

    Article  CAS  PubMed  Google Scholar 

  • Hinton M, Gutsol A et al (2007) Thromboxane hypersensitivity in hypoxic pulmonary artery myocytes: altered TP receptor localization and kinetics. Am J Physiol Lung Cell Mol Physiol 292(3):L654–L663

    Article  CAS  PubMed  Google Scholar 

  • Hirata T, Narumiya S (2011) Prostanoid receptors. Chem Rev 111(10):6209–6230

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Duncan JA et al (1999) Persistent membrane association of activated and depalmitoylated G protein alpha subunits. Proc Natl Acad Sci USA 96(2):412–417

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM et al (1987a) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Byrns RE et al (1987b) Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61(6):866–879

    Article  CAS  PubMed  Google Scholar 

  • Jaggupilli A, Dhanaraj P et al (2018) Study of adenylyl cyclase-GalphaS interactions and identification of novel AC ligands. Mol Cell Biochem 446(1–2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Ji R, Chou C-L et al (2010) EP1 prostanoid receptor coupling to G i/o up-regulates the expression of hypoxia-inducible factor-1 alpha through activation of a phosphoinositide-3 kinase signaling pathway. Mol Pharmacol 77(6):1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang M, Bajpayee NS (2009) Molecular mechanisms of go signaling. Neurosignals 17(1):23–41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang F, Tang YT et al (2013) The role of insulin-like growth factor I and hypoxia inducible factor 1alpha in vascular endothelial growth factor expression in type 2 diabetes. Ann Clin Lab Sci 43(1):37–44

    CAS  PubMed  Google Scholar 

  • Jones TL, Gutkind JS (1998) Galpha12 requires acylation for its transforming activity. Biochemistry 37(9):3196–3202

    Article  CAS  PubMed  Google Scholar 

  • Jones TL, Simonds WF et al (1990) Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci USA 87(2):568–572

    Article  CAS  PubMed  Google Scholar 

  • Jones TL, Degtyarev MY et al (1997) The stoichiometry of G alpha(s) palmitoylation in its basal and activated states. Biochemistry 36(23):7185–7191

    Article  CAS  PubMed  Google Scholar 

  • Jones RL, Giembycz MA et al (2009) Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol 158(1):104–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juhnn YS, Jones TL et al (1992) Amino- and carboxy-terminal deletion mutants of Gs alpha are localized to the particulate fraction of transfected COS cells. J Cell Biol 119(3):523–530

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG (2005) Proline hydroxylation and gene expression. Annu Rev Biochem 74:115–128

    Article  CAS  PubMed  Google Scholar 

  • Kelley LP, Kinsella BT (2003) The role of N-linked glycosylation in determining the surface expression, G protein interaction and effector coupling of the alpha (alpha) isoform of the human thromboxane A(2) receptor. Biochim Biophys Acta 1621(2):192–203

    Article  CAS  PubMed  Google Scholar 

  • Kelley-Hickie LP, Kinsella BT (2006) Homologous desensitization of signalling by the beta (beta) isoform of the human thromboxane A2 receptor. Biochim Biophys Acta 1761(9):1114–1131

    Article  CAS  PubMed  Google Scholar 

  • Kelley-Hickie LP, O’Keeffe MB et al (2007) Homologous desensitization of signalling by the alpha (alpha) isoform of the human thromboxane A2 receptor: a specific role for nitric oxide signalling. Biochim Biophys Acta 1773(6):970–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly E, Bailey CP et al (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388

    CAS  PubMed  Google Scholar 

  • Kelly BT, Graham SC et al (2014) Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345(6195):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerov V, Rubin WW et al (2007) N-terminal fatty acylation of transducin profoundly influences its localization and the kinetics of photoresponse in rods. J Neurosci 27(38):10270–10277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharitonov VG, Sundquist AR et al (1995) Kinetics of nitrosation of thiols by nitric oxide in the presence of oxygen. J Biol Chem 270(47):28158–28164

    Article  CAS  PubMed  Google Scholar 

  • Kimple AJ, Bosch DE et al (2011) Regulators of G-protein signaling and their Galpha substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 63(3):728–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Mizukami Y et al (2001) Orphan G protein-coupled receptor, GPR41, induces apoptosis via a p53/Bax pathway during ischemic hypoxia and reoxygenation. J Biol Chem 276(28):26453–26460

    Article  CAS  PubMed  Google Scholar 

  • Kinsella BT, O’Mahony DJ et al (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 281(2):957–964

    CAS  PubMed  Google Scholar 

  • Kleuss C, Krause E (2003) Galpha(s) is palmitoylated at the N-terminal glycine. EMBO J 22(4):826–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobilka BK, Deupi X (2007) Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 28(8):397–406

    Article  CAS  PubMed  Google Scholar 

  • Kokkola T, Savinainen JR et al (2005) S-nitrosothiols modulate G protein-coupled receptor signaling in a reversible and highly receptor-specific manner. BMC Cell Biol 6(1):21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhr FK, Zhang Y et al (2010) Beta-arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase. FASEB J 24(7):2475–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar GK, Klein JB (2004) Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol 96(3):1178–1186

    Article  CAS  PubMed  Google Scholar 

  • Kurihara T, Westenskow PD et al (2014) Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol 801:275–281

    Article  PubMed  Google Scholar 

  • Lancaster JR Jr (1994) Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 91(17):8137–8141

    Article  CAS  PubMed  Google Scholar 

  • Lander HM, Sehajpal PK et al (1993) Nitric oxide signaling: a possible role for G proteins. J Immunol 151(12):7182–7187

    CAS  PubMed  Google Scholar 

  • Lappano R, Rigiracciolo D et al (2016) Recent advances on the role of G protein-coupled receptors in hypoxia-mediated signaling. AAPS J 18(2):305–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson AK, Hagfjard A et al (2011) Prostaglandin D(2) induces contractions through activation of TP receptors in peripheral lung tissue from the guinea pig. Eur J Pharmacol 669(1–3):136–142

    Article  CAS  PubMed  Google Scholar 

  • Lawler OA, Miggin SM et al (2001a) The effects of the statins lovastatin and cerivastatin on signalling by the prostanoid IP-receptor. Br J Pharmacol 132(8):1639–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawler OA, Miggin SM et al (2001b) Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling. J Biol Chem 276(36):33596–33607

    Article  CAS  PubMed  Google Scholar 

  • Le Cras TD, Xue C et al (1996) Chronic hypoxia upregulates endothelial and inducible NO synthase gene and protein expression in rat lung. Am J Physiol 270(1 Pt 1):L164–L170

    PubMed  Google Scholar 

  • Leclerc PC, Lanctot PM et al (2006) S-nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. Br J Pharmacol 148(3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CM, Genetos DC et al (2007) Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol 212(1):182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-J, No YR et al (2013) Regulation of hypoxia-inducible factor 1α (HIF-1α) by lysophosphatidic acid is dependent on interplay between p53 and Krüppel-like factor 5. J Biol Chem 288(35):25244–25253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levis MJ, Bourne HR (1992) Activation of the alpha subunit of Gs in intact cells alters its abundance, rate of degradation, and membrane avidity. J Cell Biol 119(5):1297–1307

    Article  CAS  PubMed  Google Scholar 

  • Lin C, McGough R et al (2004) Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes. J Orthop Res 22(6):1175–1181

    Article  CAS  PubMed  Google Scholar 

  • Lin MJ, Fine M et al (2013) Massive palmitoylation-dependent endocytosis during reoxygenation of anoxic cardiac muscle. eLife 2:e01295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84

    Article  CAS  PubMed  Google Scholar 

  • Linder ME, Pang IH et al (1991) Lipid modifications of G protein subunits. Myristoylation of Go alpha increases its affinity for beta gamma. J Biol Chem 266(7):4654–4659

    CAS  PubMed  Google Scholar 

  • Linder ME, Middleton P et al (1993) Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci USA 90(8):3675–3679

    Article  CAS  PubMed  Google Scholar 

  • Loisel TP, Ansanay H et al (1999) Activation of the beta(2)-adrenergic receptor-Galpha(s) complex leads to rapid depalmitoylation and inhibition of repalmitoylation of both the receptor and Galpha(s). J Biol Chem 274(43):31014–31019

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115(Pt 3):455–465

    CAS  PubMed  Google Scholar 

  • Mahomed AS, Oliver E et al (2017) Tipifarnib prevents development of hypoxia-induced pulmonary hypertension. Cardiovasc Res 113(3):276–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mais DE, True TA et al (1992) Characterization by photoaffinity labelling of the human platelet thromboxane A2/prostaglandin H2 receptor: evidence for N-linked glycosylation. Eur J Pharmacol 227(3):267–274

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Villani GM et al (1985) Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther 232(3):708–716

    CAS  PubMed  Google Scholar 

  • Martin DD, Beauchamp E et al (2011) Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93(1):18–31

    Article  CAS  PubMed  Google Scholar 

  • McCallum JF, Wise A et al (1995) The role of palmitoylation of the guanine nucleotide binding protein G11 alpha in defining interaction with the plasma membrane. Biochem J 310(Pt 3):1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto A, Laufs U et al (1997) Modulation of bradykinin receptor ligand binding affinity and its coupled G-proteins by nitric oxide. J Biol Chem 272(31):19601–19608

    Article  CAS  PubMed  Google Scholar 

  • Mohorko E, Glockshuber R et al (2011) Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 34(4):869–878

    Article  CAS  PubMed  Google Scholar 

  • Moncada S (1982) Eighth Gaddum Memorial Lecture. University of London Institute of Education, December 1980. Biological importance of prostacyclin. Br J Pharmacol 76(1):3–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moomaw JF, Casey PJ (1992) Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem 267(24):17438–17443

    CAS  PubMed  Google Scholar 

  • Moores SL, Schaber MD et al (1991) Sequence dependence of protein isoprenylation. J Biol Chem 266(22):14603–14610

    CAS  PubMed  Google Scholar 

  • Morales J, Fishburn CS et al (1998) Plasma membrane localization of G alpha z requires two signals. Mol Biol Cell 9(1):1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouillac B, Caron M et al (1992) Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem 267(30):21733–21737

    CAS  PubMed  Google Scholar 

  • Mumby SM, Heukeroth RO et al (1990) G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci USA 87(2):728–732

    Article  CAS  PubMed  Google Scholar 

  • Mumby SM, Kleuss C et al (1994) Receptor regulation of G-protein palmitoylation. Proc Natl Acad Sci USA 91(7):2800–2804

    Article  CAS  PubMed  Google Scholar 

  • Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274(20):5202–5210

    Article  CAS  PubMed  Google Scholar 

  • Nahomi RB, Nagaraj RH (2018) The role of HIF-1alpha in the TGF-beta2-mediated epithelial-to-mesenchymal transition of human lens epithelial cells. J Cell Biochem 119(8):6814–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Wang L et al (2010) Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol Cell 39(2):184–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narumiya S, Sugimoto Y et al (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79(4):1193–1226

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918

    Article  CAS  PubMed  Google Scholar 

  • Nilius SM, Hasse A et al (2000) Agonist-induced long-term desensitization of the human prostacyclin receptor. FEBS Lett 484(3):211–216

    Article  CAS  PubMed  Google Scholar 

  • Nozik-Grayck E, Whalen EJ et al (2006) S-nitrosoglutathione inhibits alpha1-adrenergic receptor-mediated vasoconstriction and ligand binding in pulmonary artery. Am J Physiol Lung Cell Mol Physiol 290(1):L136–L143

    Article  CAS  PubMed  Google Scholar 

  • Ohno Y, Kihara A et al (2006) Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 1761(4):474–483

    Article  CAS  PubMed  Google Scholar 

  • O’Meara SJ, Kinsella BT (2004a) Effect of the statin atorvastatin on intracellular signalling by the prostacyclin receptor in vitro and in vivo. Br J Pharmacol 143(2):292–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Meara SJ, Kinsella BT (2004b) Investigation of the effect of the farnesyl protein transferase inhibitor R115777 on isoprenylation and intracellular signalling by the prostacyclin receptor. Br J Pharmacol 143(2):318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer LA, Gaston B et al (2000) Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol 58(6):1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Lee SY et al (2016) Structural mechanism of GPCR-arrestin interaction: recent breakthroughs. Arch Pharm Res 39(3):293–301

    Article  CAS  PubMed  Google Scholar 

  • Pavlos NJ, Friedman PA (2017) GPCR signaling and trafficking: the long and short of it. Trends Endocrinol Metab 28(3):213–226

    Article  CAS  PubMed  Google Scholar 

  • Piper PJ, Vane JR (1969) Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature 223(5201):29–35

    Article  CAS  PubMed  Google Scholar 

  • Pitcher JA, Freedman NJ et al (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    Article  CAS  PubMed  Google Scholar 

  • Ponimaskin E, Harteneck C et al (1998) A cysteine-11 to serine mutant of G alpha12 impairs activation through the thrombin receptor. FEBS Lett 429(3):370–374

    Article  CAS  PubMed  Google Scholar 

  • Ponimaskin E, Behn H et al (2000) Acylation of Galpha(13) is important for its interaction with thrombin receptor, transforming activity and actin stress fiber formation. FEBS Lett 478(1–2):173–177

    Article  CAS  PubMed  Google Scholar 

  • Probst WC, Snyder LA et al (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11(1):1–20

    Article  CAS  PubMed  Google Scholar 

  • Qanbar R, Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97(1):1–33

    Article  CAS  PubMed  Google Scholar 

  • Ransnas LA, Svoboda P et al (1989) Stimulation of beta-adrenergic receptors of S49 lymphoma cells redistributes the alpha subunit of the stimulatory G protein between cytosol and membranes. Proc Natl Acad Sci USA 86(20):7900–7903

    Article  CAS  PubMed  Google Scholar 

  • Raychowdhury MK, Yukawa M et al (1994) Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. J Biol Chem 269(30):19256–19261

    CAS  PubMed  Google Scholar 

  • Reid HM, Kinsella BT (2003) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for nitric oxide-mediated desensitization. Independent modulation of Tp alpha signaling by nitric oxide and prostacyclin. J Biol Chem 278(51):51190–51202

    Article  CAS  PubMed  Google Scholar 

  • Reid HM, Kinsella BT (2007) Palmitoylation of the TPbeta isoform of the human thromboxane A2 receptor. Modulation of G protein: effector coupling and modes of receptor internalization. Cell Signal 19(5):1056–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Resh MD (2006) Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE 359:re14

    Google Scholar 

  • Resh MD (2013) Covalent lipid modifications of proteins. Curr Biol 23(10):R431–R435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Weng JS et al (2014) Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol Cell Biol 34(1):30–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salvemini D, Kim SF et al (2013) Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Am J Physiol Regul Integr Comp Physiol 304(7):R473–R487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhosh KT, Elkhateeb O et al (2011) Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes. Br J Pharmacol 163(6):1223–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhosh KT, Sikarwar AS et al (2014) Thromboxane receptor hyper-responsiveness in hypoxic pulmonary hypertension requires serine 324. Br J Pharmacol 171(3):676–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaber J, Baltanas R et al (2012) Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol 8:622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheer A, Fanelli F et al (1996) Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15(14):3566–3578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schermuly RT, Pullamsetti SS et al (2007) Iloprost-induced desensitization of the prostacyclin receptor in isolated rabbit lungs. Respir Res 8:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwaner I, Seifert R et al (1992) The prostacyclin analogues, cicaprost and iloprost, increase cytosolic Ca2+ concentration in the human erythroleukemia cell line, HEL, via pertussis toxin-insensitive G-proteins. Eicosanoids 5(Suppl):S10–S12

    PubMed  Google Scholar 

  • Schwaner I, Offermanns S et al (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta 1265(1):8–14

    Article  PubMed  Google Scholar 

  • Seasholtz TM, Gurdal H et al (1997) Desensitization of norepinephrine receptor function is associated with G protein uncoupling in the rat aorta. Am J Physiol 273(1 Pt 2):H279–H285

    CAS  PubMed  Google Scholar 

  • Shi Y, Baker John E et al (2002) Chronic hypoxia increases endothelial nitric oxide synthase generation of nitric oxide by increasing heat shock protein 90 association and serine phosphorylation. Circ Res 91(4):300–306

    Article  CAS  PubMed  Google Scholar 

  • Shirato K, Nakajima K et al (2011) Hypoxic regulation of glycosylation via the N-acetylglucosamine cycle. J Clin Biochem Nutr 48(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Shrimal S, Cherepanova NA et al (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78

    Article  CAS  PubMed  Google Scholar 

  • Siderovski DP, Willard FS (2005) The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci 1(2):51–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikarwar AS, Hinton M et al (2014) Palmitoylation of Galphaq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 50(1):135–143

    CAS  PubMed  Google Scholar 

  • Silva-Filho AF, Sena WLB et al (2017) Glycobiology modifications in intratumoral hypoxia: the breathless side of glycans interaction. Cell Physiol Biochem 41(5):1801–1829

    Article  CAS  PubMed  Google Scholar 

  • Simko V, Takacova M et al (2016) Dexamethasone downregulates expression of carbonic anhydrase IX via HIF-1alpha and NF-kappaB-dependent mechanisms. Int J Oncol 49(4):1277–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon MI, Strathmann MP et al (1991) Diversity of G proteins in signal transduction. Science 252(5007):802–808

    Article  CAS  PubMed  Google Scholar 

  • Smeland TE, Seabra MC et al (1994) Geranylgeranylated Rab proteins terminating in Cys-Ala-Cys, but not Cys-Cys, are carboxyl-methylated by bovine brain membranes in vitro. Proc Natl Acad Sci USA 91(22):10712–10716

    Article  CAS  PubMed  Google Scholar 

  • Smith WL (1986) Prostaglandin biosynthesis and its compartmentation in vascular smooth muscle and endothelial cells. Annu Rev Physiol 48:251–262

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Rajagopal S (2016) The beta-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem 291(17):8969–8977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth EM, Nestor PV et al (1996) Agonist-dependent phosphorylation of an epitope-tagged human prostacyclin receptor. J Biol Chem 271(52):33698–33704

    Article  CAS  PubMed  Google Scholar 

  • Smyth EM, Li WH et al (1998) Phosphorylation of the prostacyclin receptor during homologous desensitization. A critical role for protein kinase c. J Biol Chem 273(36):23258–23266

    Article  CAS  PubMed  Google Scholar 

  • Smyth EM, Austin SC et al (2000) Internalization and sequestration of the human prostacyclin receptor. J Biol Chem 275(41):32037–32045

    Article  CAS  PubMed  Google Scholar 

  • Song KS, Sargiacomo M et al (1997) Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation. Cell Mol Biol (Noisy-le-grand) 43(3):293–303

    CAS  Google Scholar 

  • Soto AG, Smith TH et al (2015) N-linked glycosylation of protease-activated receptor-1 at extracellular loop 2 regulates G-protein signaling bias. Proc Natl Acad Sci USA 112(27):E3600–E3608

    Article  CAS  PubMed  Google Scholar 

  • Sriram K, Insel PA (2018) G protein-coupled receptors as targets for approved drugs: how many targets and how many drugs?”. Mol Pharmacol 93(4):251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamler JS, Simon DI et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89(1):444–448

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Toone EJ et al (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18(5):691–696

    Article  CAS  PubMed  Google Scholar 

  • Stanislaus D, Janovick JA et al (1997) Regulation of G(q/11)alpha by the gonadotropin-releasing hormone receptor. Mol Endocrinol 11(6):738–746

    CAS  PubMed  Google Scholar 

  • Stanislaus D, Ponder S et al (1998) Gonadotropin-releasing hormone receptor couples to multiple G proteins in rat gonadotrophs and in GGH3 cells: evidence from palmitoylation and overexpression of G proteins. Biol Reprod 59(3):579–586

    Article  CAS  PubMed  Google Scholar 

  • Supuran CT (2018) Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opin Investig Drugs 27(12):963–970

    Article  CAS  PubMed  Google Scholar 

  • Syrovatkina V, Alegre KO et al (2016) Regulation, signaling, and physiological functions of G-proteins. J Mol Biol 428(19):3850–3868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Shimizu T et al (2012) Possible involvement of S-nitrosylation of brain cyclooxygenase-1 in bombesin-induced central activation of adrenomedullary outflow in rats. Eur J Pharmacol 679(1–3):40–50

    Article  CAS  PubMed  Google Scholar 

  • Tang T, Arbiser JL et al (2002) Phosphorylation by mitogen-activated protein kinase mediates the hypoxia-induced turnover of the TAL1/SCL transcription factor in endothelial cells. J Biol Chem 277(21):18365–18372

    Article  CAS  PubMed  Google Scholar 

  • Taussig R, Iniguez-Lluhi JA et al (1993) Inhibition of adenylyl cyclase by Gi alpha. Science 261(5118):218–221

    Article  CAS  PubMed  Google Scholar 

  • Thoma NH, Niculae A et al (2001) Double prenylation by RabGGTase can proceed without dissociation of the mono-prenylated intermediate. J Biol Chem 276(52):48631–48636

    Article  CAS  PubMed  Google Scholar 

  • Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153(Suppl 1):S167–S176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torrecilla I, Tobin AB (2006) Co-ordinated covalent modification of G-protein coupled receptors. Curr Pharm Des 12(14):1797–1808

    Article  CAS  PubMed  Google Scholar 

  • Tosun M, Paul RJ et al (1998) Role of extracellular Ca++ influx via L-type and non-L-type Ca++ channels in thromboxane A2 receptor-mediated contraction in rat aorta. J Pharmacol Exp Ther 284(3):921–928

    CAS  PubMed  Google Scholar 

  • Uski T, Andersson KE et al (1983) Responses of isolated feline and human cerebral arteries to prostacyclin and some of its metabolites. J Cereb Blood Flow Metab 3(2):238–245

    Article  CAS  PubMed  Google Scholar 

  • Veit M, Nurnberg B et al (1994) The alpha-subunits of G-proteins G12 and G13 are palmitoylated, but not amidically myristoylated. FEBS Lett 339(1–2):160–164

    Article  CAS  PubMed  Google Scholar 

  • Vogler O, Barcelo JM et al (2008) Membrane interactions of G proteins and other related proteins. Biochim Biophys Acta 1778(7–8):1640–1652

    Article  PubMed  CAS  Google Scholar 

  • Waheed AA, Jones TL (2002) Hsp90 interactions and acylation target the G protein Galpha 12 but not Galpha 13 to lipid rafts. J Biol Chem 277(36):32409–32412

    Article  CAS  PubMed  Google Scholar 

  • Walsh MT, Kinsella BT (2000) Regulation of the human prostanoid TPalpha and TPbeta receptor isoforms mediated through activation of the EP(1) and IP receptors. Br J Pharmacol 131(3):601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MT, Foley JF et al (1998) Characterization of the role of N-linked glycosylation on the cell signaling and expression of the human thromboxane A2 receptor alpha and beta isoforms. J Pharmacol Exp Ther 286(2):1026–1036

    CAS  PubMed  Google Scholar 

  • Walsh MT, Foley JF et al (2000) The alpha, but not the beta, isoform of the human thromboxane A2 receptor is a target for prostacyclin-mediated desensitization. J Biol Chem 275(27):20412–20423

    Article  CAS  PubMed  Google Scholar 

  • Wang GL, Jiang BH et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92(12):5510–5514

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Windh RT et al (1999) N-Myristoylation and betagamma play roles beyond anchorage in the palmitoylation of the G protein alpha(o) subunit. J Biol Chem 274(52):37435–37442

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Duan L et al (2018) MicroRNA-101 protects bladder of BOO from hypoxia-induced fibrosis by attenuating TGF-beta-smad2/3 signaling. IUBMB Life 71(2):235–243

    PubMed  Google Scholar 

  • Watras J, Benevolensky D (1987) Inositol 1,4,5-trisphosphate-induced calcium release from canine aortic sarcoplasmic reticulum vesicles. Biochim Biophys Acta 931(3):354–363

    Article  CAS  PubMed  Google Scholar 

  • Wedegaertner PB (2012) G protein trafficking. Subcell Biochem 63:193–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedegaertner PB, Bourne HR (1994) Activation and depalmitoylation of Gs alpha. Cell 77(7):1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Wedegaertner PB, Chu DH et al (1993) Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem 268(33):25001–25008

    CAS  PubMed  Google Scholar 

  • Wedegaertner PB, Wilson PT et al (1995) Lipid modifications of trimeric G proteins. J Biol Chem 270(2):503–506

    Article  CAS  PubMed  Google Scholar 

  • Whittaker N, Bunting S et al (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12(6):915–928

    Article  CAS  PubMed  Google Scholar 

  • Wikstrom K, Kavanagh DJ et al (2008) Differential regulation of RhoA-mediated signaling by the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor: independent modulation of TPalpha signaling by prostacyclin and nitric oxide. Cell Signal 20(8):1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SP, Dorn GW 2nd et al (1994) Prostaglandin I2 mediates contraction and relaxation of vascular smooth muscle. Am J Physiol 267(2 Pt 2):H796–H803

    CAS  PubMed  Google Scholar 

  • Wilson PT, Bourne HR (1995) Fatty acylation of alpha z. Effects of palmitoylation and myristoylation on alpha z signaling. J Biol Chem 270(16):9667–9675

    Article  CAS  PubMed  Google Scholar 

  • Wilson SJ, Smyth EM (2006) Internalization and recycling of the human prostacyclin receptor is modulated through its isoprenylation-dependent interaction with the delta subunit of cGMP phosphodiesterase 6. J Biol Chem 281(17):11780–11786

    Article  CAS  PubMed  Google Scholar 

  • Wilson DP, Susnjar M et al (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of Ca2+ entry and Ca2+ sensitization: rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem J 389(Pt 3):763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wink DA, Nims RW et al (1994) Reaction kinetics for nitrosation of cysteine and glutathione in aerobic nitric oxide solutions at neutral pH. Insights into the fate and physiological effects of intermediates generated in the NO/O2 reaction. Chem Res Toxicol 7(4):519–525

    Article  CAS  PubMed  Google Scholar 

  • Winter J, Jakob U (2004) Beyond transcription–new mechanisms for the regulation of molecular chaperones. Crit Rev Biochem Mol Biol 39(5–6):297–317

    Article  CAS  PubMed  Google Scholar 

  • Wise A, Grassie MA et al (1997a) A cysteine-3 to serine mutation of the G-protein Gi1 alpha abrogates functional activation by the alpha 2A-adrenoceptor but not interactions with the beta gamma complex. Biochemistry 36(35):10620–10629

    Article  CAS  PubMed  Google Scholar 

  • Wise A, Parenti M et al (1997b) Interaction of the G-protein G11alpha with receptors and phosphoinositidase C: the contribution of G-protein palmitoylation and membrane association. FEBS Lett 407(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Wojciak-Stothard B, Zhao L et al (2012) Role of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia. Circ Res 110(11):1423–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SK (2003) G protein selectivity is regulated by multiple intracellular regions of GPCRs. Neurosignals 12(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Woodward DF, Jones RL et al (2011) International Union of Basic and Clinical Pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol Rev 63(3):471–538

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wensel TG (1992) N-myristoylation of the rod outer segment G protein, transducin, in cultured retinas. J Biol Chem 267(32):23197–23201

    CAS  PubMed  Google Scholar 

  • Zhang Q, Andersen ME (2007) Dose response relationship in anti-stress gene regulatory networks. PLoS Comput Biol 3(3):e24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Austin SC et al (2001) Glycosylation of the human prostacyclin receptor: role in ligand binding and signal transduction. Mol Pharmacol 60(3):480–487

    CAS  PubMed  Google Scholar 

  • Zhang Q, Pi J et al (2010) A systems biology perspective on Nrf2-mediated antioxidant response. Toxicol Appl Pharmacol 244(1):84–97

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Bhattacharya S et al (2015) Adaptive posttranslational control in cellular stress response pathways and its relationship to toxicity testing and safety assessment. Toxicol Sci 147(2):302–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Zhang Z (2016) Glucose transporter regulation in cancer: a profile and the loops. Crit Rev Eukaryot Gene Expr 26(3):223–238

    Article  PubMed  Google Scholar 

  • Zhao H, Sun J et al (2011) Myristoylated methionine sulfoxide reductase A protects the heart from ischemia-reperfusion injury. Am J Physiol-Heart Circ Physiol 301(4):H1513–H1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou SN, Lu JX et al (2019) S-nitrosylation of prostacyclin synthase instigates nitrate cross-tolerance in vivo. Clin Pharmacol Ther 105(1):201–209

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamala Dakshinamurti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikarwar, A.S., Bhagirath, A.Y. & Dakshinamurti, S. Effects of Post-translational Modifications on Membrane Localization and Signaling of Prostanoid GPCR–G Protein Complexes and the Role of Hypoxia. J Membrane Biol 252, 509–526 (2019). https://doi.org/10.1007/s00232-019-00091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00091-4

Keywords

Navigation