Skip to main content

Advertisement

Log in

The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The intrinsically disordered proteins and protein regions (IDPs/IDPRs) do not have unique structures, but are known to be functionally important and their conformational flexibility and structural plasticity have engendered a paradigmatic shift in the classical sequence–structure–function maxim. Fundamental understanding in this field has significantly evolved since the discovery of this class of proteins about 25 years ago. Though the IDPRs of transmembrane proteins (TMP-IDPRs) comply with the broad definition of typical IDPs and IDPRs found in water-soluble globular proteins, much less is explored and known about them. In this review, we assimilate the key emerging biophysical principles from the limited studies on TMP-IDPRs and provide several context-specific biological examples to highlight the ubiquitous nature of TMP-IDPRs and their functional importance in cellular functions. Besides providing a spectrum of insights from sequence to structural disorder and functions, we also review the challenges and methodological advances in studying the structure–function relationship of TMP-IDPRs. We also lay stress upon the importance of an integrative framework, where ensemble-averaged (and mostly low-resolution) data from multiple experiments can be faithfully integrated with modelling techniques such as advanced sampling, coarse-graining, and free energy minimization methods for a high-fidelity characterization of TMP-IDPRs. We close the review by providing futuristic perspective with suggestions on how we could use the ideas and methods from the exciting field of protein engineering in conjunction with integrative modelling framework to advance the IDPR field and harness the sequence–disorder–function paradigm towards functional design of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Jiffri OH, Al-Sharif FM, Al-Jiffri EH, Uversky VN (2016) Intrinsic disorder in biomarkers of insulin resistance, hypoadiponectinemia, and endothelial dysfunction among the type 2 diabetic patients. Intrinsically Disord Proteins 4:e1171278

    PubMed  PubMed Central  Google Scholar 

  • Allison JR, Rivers RC, Christodoulou JC, Vendruscolo M, Dobson CM (2014) A relationship between the transient structure in the monomeric state and the aggregation propensities of α-synuclein and β-synuclein. J Am Chem Soc. 53:7170–7183

    CAS  Google Scholar 

  • Almén MS, Nordström KJV, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:1–14

    Google Scholar 

  • Arkhipov A, Shan Y, Das R, Endres NF, Eastwood MP, Wemmer DE, Kuriyan J, Shaw DE (2013) Architecture and membrane interactions of the EGF receptor. Cell 152:557–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bah A, Vernon RM, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay LE, Forman-Kay JD (2015) Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature 519:106–109

    CAS  PubMed  Google Scholar 

  • Baker M (2011) Protein engineering: navigating between chance and reason. Nat Methods 8:623–626

    CAS  PubMed  Google Scholar 

  • Baker JMR, Hudson RP, Kanelis V, Choy W, Thibodeau PH, Thomas PJ, Forman-kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balázs A, Csizmok V, Buday L, Rakács M, Kiss R, Bokor M, Udupa R, Tompa K, Tompa P (2009) High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. FEBS J 276:3744–3756

    PubMed  Google Scholar 

  • Banjade S, Rosen MK (2014) Phase transitions of multivalent proteins can promote clustering of membrane receptors. Elife 3:e04123

    PubMed Central  Google Scholar 

  • Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Déméné H (2009) Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. J Mol Biol 388:491–507

    CAS  PubMed  Google Scholar 

  • Berlow RB, Dyson HJ, Wright PE (2015) Functional advantages of dynamic protein disorder. FEBS Lett 589:2433–2440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard-Pierrot I, Brams A, Dunois-Lardé C, Caillault A, Medina SG, Cappellen D, Graff G, Thiery JP, Chopin D, Ricol D (2005) Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b. Carcinogenesis 27:740–747

    PubMed  Google Scholar 

  • Best RB (2017) Computational and theoretical advances in studies of intrinsically disordered proteins. Curr Opin Struct Biol 42:147–154

    CAS  PubMed  Google Scholar 

  • Best RB, Zheng W, Mittal J (2014) Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput. 25:5113–5124

    Google Scholar 

  • Bienz M (2014) Signalosome assembly by domains undergoing dynamic head-to-tail polymerization. Trends Biochem Sci 39:487–495

    CAS  PubMed  Google Scholar 

  • Björling A, Niebling S, Marcellini M, Van Der Spoel D, Westenhoff S (2015) Deciphering solution scattering data with experimentally guided molecular dynamics simulations. J Chem Theory Comput 11:780–787

    PubMed  PubMed Central  Google Scholar 

  • Boguth CA, Singh P, Huang C, Tesmer JJ (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29:3249–3259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boomsma W, Ferkinghoff-Borg J, Lindorff-Larsen K (2014) Combining experiments and simulations using the maximum entropy principle. PLoS Comput Biol 10:e1003406

    PubMed  PubMed Central  Google Scholar 

  • Borgia A, Borgia MB, Bugge K, Kissling VM, Heidarsson PO, Fernandes CB, Sottini A, Soranno A, Buholzer KJ, Nettels D, Kragelund BB, Best RB, Schuler B (2018) Extreme disorder in an ultrahigh-affinity protein complex. Nature 555:61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bottar S, Lindorff-Larsen K (2018) Biophysical experiments and biomolecular simulations: a perfect match? Science 361:355–360

    Google Scholar 

  • Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, Dimaio F, Pereira JH, Sankaran B, Seelig G, Zwart PH, Baker D (2016) De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352:680–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bozoky Z, Krzeminski M, Muhandiram R, Birtley JR, Al-zahrani A, Thomas PJ, Frizzell RA, Ford RC, Forman-Kay JD (2013) Regulatory R region of the CFTR chloride channel is a dynamic integrator of phospho-dependent intra-and intermolecular interactions. Proc Natl Acad Sci USA 110:E4427–E4436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CJ, Johnson AK, Dunker AK, Daughdrill GW (2011) Evolution and disorder. Curr Opin Struct Biol 21:441–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buday L, Tompa P (2010) Functional classification of scaffold proteins and related molecules. FEBS J 277:4348–4355

    CAS  PubMed  Google Scholar 

  • Bugge K, Papaleo E, Haxholm GW, Hopper JTS, Robinson CV, Olsen JG, Lindorff-Larsen K, Kragelund BB (2016) A combined computational and structural model of the full-length human prolactin receptor. Nat Commun 7:1–11

    Google Scholar 

  • Buljan M, Chalancon G, Dunker AK, Bateman A, Balaji S, Fuxreiter M, Babu MM (2013) Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr Opin Struct Biol 23:443–450

    CAS  PubMed  Google Scholar 

  • Bunnell SC, Hong DI, Kardon JR, Yamazaki T, McGlade CJ, Barr VA, Samelson LE (2002) T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J Cell Biol 158:1263–1275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgar HR, Burns HD, Elsden JL, Lalioti MD, Heath JK (2002) Association of the signaling adaptor FRS2 with fibroblast growth factor receptor 1 (Fgfr1) is mediated by alternative splicing of the juxtamembrane domain. J Biol Chem 277:4018–4023

    CAS  PubMed  Google Scholar 

  • Bürgi J, Xue B, Uversky VN, Van Der Goot FG (2016) Intrinsic disorder in transmembrane proteins: roles in signaling and topology prediction. PLoS ONE 11:1–21

    Google Scholar 

  • Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC (2015) Intrinsically disordered proteins drive membrane curvature. Nat Commun 6:1–11

    Google Scholar 

  • Cabanos C, Wang M, Han X, Hansen SB (2017) A soluble fluorescent binding assay reveals PIP 2 antagonism of TREK-1 channels. Cell Rep 20:1287–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavalli A, Camilloni C, Vendruscolo M (2013) Molecular dynamics simulations with replica-averaged structural restraints generate structural ensembles according to the maximum entropy principle. J Chem Phys 138:1–5

    Google Scholar 

  • Chakraborty AK, Weiss A (2014) Insights into the initiation of TCR signaling. Nat Immunol 15:798–807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee D, Zhiping LL, Tan SM, Bhattacharjya S (2018) NMR structure, dynamics and interactions of the integrin β2 cytoplasmic tail with filamin domain IgFLNa21. Sci Rep 8:5490

    PubMed  PubMed Central  Google Scholar 

  • Chen H-L, Chang P-S, Hsu H-C, Lee J-H, Ni Y-H, Hsu H, Jeng Y-M, Chang M-H (2001) Progressive familial intrahepatic cholestasis with high γ-glutamyltranspeptidase levels in Taiwanese infants: role of MDR3 gene defect? Pediatr Res 50:50–55

    CAS  PubMed  Google Scholar 

  • Cheng Y, LeGall T, Oldfield CJ, Dunker AK, Uversky VN (2006) Abundance of intrinsic disorder in protein associated with cardiovascular disease. Biochemistry 45:10448–10460

    CAS  PubMed  Google Scholar 

  • Choi UB, Kazi R, Stenzoski N, Wollmuth LP, Uversky VN, Bowen ME (2013) Modulating the intrinsic disorder in the cytoplasmic domain alters the biological activity of the N-methyl-D-aspartate-sensitive glutamate receptor. J Biol Chem 288:22506–22515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung KY, Rasmussen SGF, Liu T, Li S, Devree BT, Chae PS, Calinski D, Kobilka BK, Woods VL, Sunahara RK (2011) Conformational changes in the G protein Gs induced by the β2adrenergic receptor. Nature 477:611–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clister T, Mehta S, Zhang J (2015) Single-cell analysis of G-protein signal transduction. J Biol Chem 290:6681–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortese MS, Uversky VN, Keith Dunker A (2008) Intrinsic disorder in scaffold proteins: getting more from less. Prog Biophys Mol Biol 98:85–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darling AL, Uversky VN (2017) Intrinsic disorder in proteins with pathogenic repeat expansions. Molecules 22:2027

    PubMed Central  Google Scholar 

  • Darling AL, Liu Y, Oldfield CJ, Uversky VN (2018) Intrinsically disordered proteome of human membrane-less organelles. Proteomics 18:1700193

    Google Scholar 

  • De Biasio A, Guarnaccia C, Popovic M, Uversky VN, Pintar A, Pongor S (2008) Prevalence of intrinsic disorder in the intracellular region of human single-pass type I proteins: the case of the notch ligand Delta-4. J Proteome Res 7:2496–2506

    PubMed  PubMed Central  Google Scholar 

  • De Vree JML, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze J-F, Desrochers M, Burdelski M, Bernard O (1998) Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA 95:282–287

    PubMed  PubMed Central  Google Scholar 

  • Degiorgio D, Colombo C, Seia M, Porcaro L, Costantino L, Zazzeron L, Bordo D, Coviello DA (2007) Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur J Hum Genet 15:1230

    CAS  PubMed  Google Scholar 

  • Deng W, Cho S, Su PC, Berger BW, Li R (2014) Membrane-enabled dimerization of the intrinsically disordered cytoplasmic domain of ADAM10. Proc Natl Acad Sci USA 111:15987–15992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dill KA, Maccallum JL (2013) The protein-folding problem, 50 years on. Science 338:1042–1047

    Google Scholar 

  • Dobson L, Reményi I, Tusnády GE (2015) The human transmembrane proteome. Biol Direct 10:1–18

    CAS  Google Scholar 

  • Dosztányi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995

    PubMed  Google Scholar 

  • Douglass AD, Vale RD (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121:937–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Uversky VN (2017) A comprehensive survey of the roles of highly disordered proteins in type 2 Diabetes. Int J Mol Sci 18:2010

    PubMed Central  Google Scholar 

  • Dunker AK, Gough J (2011) Sequences and topology: intrinsic disorder in the evolving universe of protein structure. Curr Opin Struct Biol 21:379–381

    CAS  PubMed  Google Scholar 

  • Dunker K, Obradovic Z (2001) The protein trinity-linking function and disorder. Nat Biotechnol. 19:805–806

    CAS  PubMed  Google Scholar 

  • Dunker AK, Romero P, Obradovic Z, Garner EC, Brown CJ (2000) Intrinsic protein disorder in complete genomes. Genome Inform 11:161–171

    CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    CAS  PubMed  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    CAS  PubMed  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    CAS  PubMed  Google Scholar 

  • Dunker AK, Bondos SE, Huang F, Oldfield CJ (2015) Intrinsically disordered proteins and multicellular organisms. Semin Cell Dev Biol 37:44–55

    CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12:54–60

    CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    CAS  PubMed  Google Scholar 

  • Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE (2013) Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152:543–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fantl WJ, Johnson DE, Williams LT (1993) Signalling by receptor tyrosine kinases. Annu Rev Biochem 62:453–481

    CAS  PubMed  Google Scholar 

  • Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang C-Y, Moritz RL (2012) The state of the human proteome in 2012 as viewed through PeptideAtlas. J Proteome Res 12:162–171

    PubMed  PubMed Central  Google Scholar 

  • Farrah T, Deutsch EW, Omenn GS, Sun Z, Watts JD, Yamamoto T, Shteynberg D, Harris MM, Moritz RL (2013) State of the human proteome in 2013 as viewed through PeptideAtlas: comparing the kidney, urine, and plasma proteomes for the biology-and disease-driven Human Proteome Project. J Proteome Res 13:60–75

    PubMed  PubMed Central  Google Scholar 

  • Fealey ME, Mahling R, Rice AM, Dunleavy K, Kobany SEG, Lohese KJ, Horn B, Hinderliter A (2016) Synaptotagmin is intrinsically disordered region interacts with synaptic vesicle lipids and exerts allosteric control over C2A. Biochemistry 55:2914–2926

    CAS  PubMed  Google Scholar 

  • Fisher CK, Huang A, Stultz CM (2010) Modeling intrinsically disordered proteins with bayesian statistics. J Am Chem Soc 132:14919–14927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flock T, Weatheritt RJ, Latysheva NS, Babu MM (2014) Controlling entropy to tune the functions of intrinsically disordered regions. Curr Opin Struct Biol 26:62–72

    CAS  PubMed  Google Scholar 

  • Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    PubMed  Google Scholar 

  • Gallo LH, Nelson KN, Meyer AN, Donoghue DJ (2015) Functions of fibroblast growth factor receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev 26:425–449

    CAS  PubMed  Google Scholar 

  • Ghatak S, Banerjee A, Sikdar SK (2015) Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. J Physiol 594:59–81

    PubMed  PubMed Central  Google Scholar 

  • Gibbs EB, Cook EC, Showalter SA (2017) Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 628:57–70

    CAS  PubMed  Google Scholar 

  • Granata D, Camilloni C, Vendruscolo M, Laio A (2013) Characterization of the free-energy landscapes of proteins by NMR-guided metadynamics. Proc Natl Acad Sci USA 110:6817–6822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grecco HE, Schmick M, Bastiaens PI (2011) Signaling from the living plasma membrane. Cell 144:897–909

    CAS  PubMed  Google Scholar 

  • Grosely R, Kopanic JL, Nabors S, Kieken F, Spagnol G, Al-mugotir M, Zach S, Sorgen PL (2013) Effects of phosphorylation on the structure and backbone dynamics of the intrinsically disordered Connexin43 carboxyl-terminal domain. J Biol Chem 288:24857–24870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guharoy M, Szabo B, Martos SC, Kosol S, Tompa P (2013) Intrinsic structural disorder in cytoskeletal proteins. Cytoskeleton 70:550–571

    CAS  PubMed  Google Scholar 

  • Haxholm GW, Nikolajsen LF, Olsen JG, Fredsted J, Larsen FH, Goffin V, Pedersen SF, Brooks AJ, Waters MJ, Kragelund BB (2015) Intrinsically disordered cytoplasmic domains of two cytokine receptors mediate conserved interactions with membranes. Biochem J 468:495–506

    CAS  PubMed  Google Scholar 

  • Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:0890–0901

    CAS  Google Scholar 

  • Hellmich UA, Gaudet R (2014) High-resolution views of TRPV1 and their implications for the TRP channel superfamily. Handb Exp Pharmacol 223:991–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honoré E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    PubMed  Google Scholar 

  • Honoré E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976

    PubMed  PubMed Central  Google Scholar 

  • Hosseinzadeh P, Marshall NM, Chacón KN, Yu Y, Nilges MJ, Yee S (2016) Design of a single protein that spans the entire 2-V range of physiological redox potentials. Proc Natl Acad Sci USA 113:262–267

    CAS  PubMed  Google Scholar 

  • Houtman JCD, Yamaguchi H, Barda-Saad M, Braiman A, Bowden B, Appella E, Schuck P, Samelson LE (2006) Oligomerization of signaling complexes by the multipoint binding of GRB2 to both LAT and SOS1. Nat Struct Mol Biol 13:798

    CAS  PubMed  Google Scholar 

  • Hsu W-L, Oldfield C, Jingwei Meng FH, Xue B, Uversky VN, Pedro Romero AKD (2012) Intrinsic protein disorder and protein–protein interactions. Pac Symp Biocomput 2012:116–127

    Google Scholar 

  • Hsu W-L, Oldfield CJ, Xue B, Meng J, Huang F, Romero P, Uversky VN, Dunker AK (2013) Exploring the binding diversity of intrinsically disordered proteins involved in one-to-many binding. Protein Sci 22:258–273

    CAS  PubMed  Google Scholar 

  • Hu G, Wu Z, Uversky NV, Kurgan L (2017) Functional analysis of human hub proteins and their interactors involved in the intrinsic disorder-enriched interactions. Int J Mol Sci 18:2761

    PubMed Central  Google Scholar 

  • Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, De Groot BL, Grubmüller H, MacKerell AD (2016a) CHARMM36 m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73

    PubMed  PubMed Central  Google Scholar 

  • Huang P-S, Boyken SE, Baker D (2016b) The coming of age of de novo protein design. Nature 537:320–327

    CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584

    CAS  PubMed  Google Scholar 

  • Iakoucheva LM, Radivojac P, Brown CJ, Connor TRO, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M (2001) Structural basis for fibroblast growth factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci USA 98:7182–7187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemin E, Bernard O, Hadchouel M, Cresteil D, De Vree JML, Paul M, Elferink RPJO, Bosma PJ, Sokal EM, Sturm E (2001) The wide spectrum of multidrug resistance 3 deficiency: from neonatal cholestasis to cirrhosis of adulthood. Gastroenterology 120:1448–1458

    CAS  PubMed  Google Scholar 

  • Jakob U, Kriwacki R, Uversky VN (2014) Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chem Rev 114:6779–6805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, Wemmer DE, Zhang X, Kuriyan J (2009) Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. Cell 137:1293–1307

    PubMed  PubMed Central  Google Scholar 

  • Kasahara K, Shiina M, Higo J, Ogata K, Nakamura H (2018) Phosphorylation of an intrinsically disordered region of Ets1 shifts a multi-modal interaction ensemble to an auto-inhibitory state. Nucleic Acids Res 46:2243–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keegan AD, Paul WE (1992) Multichain immune recognition receptors: similarities in structure and signaling pathways. Immunol Today 13:63–68

    CAS  PubMed  Google Scholar 

  • Keppel TR, Sarpong K, Murray EM, Monsey J, Zhu J, Bose R (2017) Biophysical evidence for intrinsic disorder in the C-terminal tails of the epidermal growth factor receptor (EGFR) and HER3 receptor tyrosine kinases. J Biol Chem 292:597–610

    CAS  PubMed  Google Scholar 

  • Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S (2014) A draft map of the human proteome. Nature 509:575–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimanius D, Pettersson I, Schluckebier G, Lindahl E, Andersson M (2015) SAXS-guided metadynamics. J Chem Theory Comput 11:3491–3498

    CAS  PubMed  Google Scholar 

  • Kjaergaard M, Kragelund BB (2017) Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 74:3205–3224

    CAS  PubMed  Google Scholar 

  • Kjaergaard M, Nørholm A, Hendus-altenburger R, Pedersen SF, Poulsen FM, Kragelund BB (2010) Temperature-dependent structural changes in intrinsically disordered proteins: formation of α-helices or loss of polyproline II? Protein Sci 19:1555–1564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klemm JD, Schreiber SL, Crabtree GR (1998) Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592

    CAS  PubMed  Google Scholar 

  • Kloda A, Martinac B, Adams DJ (2007) Polymodal regulation of NMDA receptor channels. Channels 1:334–343

    PubMed  Google Scholar 

  • Kozma D, Simon I, Tusnády GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:524–529

    Google Scholar 

  • Kulkarni P, Uversky NV (2017) Cancer/testis antigens: “smart” biomarkers for diagnosis and prognosis of prostate and other cancers. Int J Mol Sci 18:740

    PubMed Central  Google Scholar 

  • Kulkarni P, Uversky VN (2018) Intrinsically disordered proteins: the dark horse of the dark proteome. Proteomics 18:1800061

    Google Scholar 

  • Kulkarni P, Jolly MK, Jia D, Mooney SM, Bhargava A, Kagohara LT, Chen Y, Hao P, He Y, Veltri RW, Grishaev A, Weninger K, Levine H, Orban J (2017) Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci USA 114:E2644–E2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai PS, DeMarco R, Lopes JLS (2017) Advantages of synchrotron radiation circular dichroism spectroscopy to study intrinsically disordered proteins. Eur Biophys J 46:599–606

    CAS  PubMed  Google Scholar 

  • Künze G, Barré P, Scheidt HA, Thomas L, Eliezer D, Huster D (2012) Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. BBA Biomembr 1818:2302–2313

    Google Scholar 

  • Kurotani A, Sakurai T (2015) In Silico analysis of correlations between protein disorder and post-translational modifications in algae. Int J Mol Sci 16:19812–19835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurotani A, Tokmakov AA, Kuroda Y, Fukami Y, Shinozaki K, Sakurai T (2014) Sequence analysis correlations between predicted protein disorder and post-translational modifications in plants. Bioinformatics 30:1095–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon A, John M, Ruan Z, Kannan N (2018) Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. J Biol Chem 293:5102–5116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landau KS, Na I, Schenck RO, Uversky VN (2016) Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer. Asian J Androl 18:662–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latysheva NS, Flock T, Weatheritt RJ, Chavali S, Babu MM (2015) How do disordered regions achieve comparable functions to structured domains? Protein Sci 24:909–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E (2000) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491

    PubMed  PubMed Central  Google Scholar 

  • LeBlanc SJ, Kulkarni P, Weninger KR (2018) Single Molecule FRET: a powerful tool to study intrinsically disordered proteins. Biomolecules 8(4):140

    PubMed Central  Google Scholar 

  • Legate KR, Fassler R (2009) Mechanisms that regulate adaptor binding to -integrin cytoplasmic tails. J Cell Sci 122:187–198

    CAS  PubMed  Google Scholar 

  • Lemke EA (2016) The multiple faces of disordered nucleoporins. J Mol Biol 428:2011–2024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, James ZM, Dong X, Karim CB, Thomas DD (2012a) Structural and functional dynamics of an integral membrane protein complex modulated by lipid headgroup charge. JMolBiol 418:379–389

    CAS  Google Scholar 

  • Li P, Banjade S, Cheng H-C, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF (2012b) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H-Y, Xu J, Ischenko I, Ornitz DM, Halegoua S, Hayman MJ (1998) Identification of the cytoplasmic regions of fibroblast growth factor (FGF) receptor 1 which play important roles in induction of neurite outgrowth in PC12 cells by FGF-1. Mol Cell Biol 18:3762–3770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linggi B, Carpenter G (2006) ErbB receptors: new insights on mechanisms and biology. Trends Cell Biol 16:649–656

    CAS  PubMed  Google Scholar 

  • Liu Z, Huang Y (2014) Advantages of proteins being disordered. Protein Sci 23:539–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lluis MW, Godfroy JI, Yin H (2013) Protein engineering methods applied to membrane protein targets. Protein Eng Des Sel 26:91–100

    CAS  PubMed  Google Scholar 

  • Lu P, Min D, DiMaio F, Wei KY, Vahey MD, Boyken SE, Chen Z, Fallas JA, Ueda G, Sheffler W, Mulligan VK, Xu W, Bowie JU, Baker D (2018) Accurate computational design of multipass transmembrane proteins. Science. 359:1042–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacCallum JL, Perez A, Dill KA (2015) Determining protein structures by combining semireliable data with atomistic physical models by Bayesian inference. Proc Natl Acad Sci USA 112:6985–6990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Magidovich E, Fleishman SJ, Yifrach O (2006) Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics 22:1546–1550

    CAS  PubMed  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    CAS  PubMed  Google Scholar 

  • Malaney P, Uversky VN, Davé V (2017) PTEN proteoforms in biology and disease. Cell Mol Life Sci 74:2783–2794

    CAS  PubMed  Google Scholar 

  • Malik RU, Ritt M, DeVree BT, Neubig RR, Sunahara RK, Sivaramakrishnan S (2013) Detection of G protein-selective G protein-coupled receptor (GPCR) conformations in live cells. J Biol Chem 288:17167–17178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A (2016) Principles and overview of sampling methods for modeling macromolecular structure and dynamics. PLoS Comput Biol 12:1–70

    Google Scholar 

  • Mayzel M, Lengqvist J, Orekhov VY, Rosenlo J (2014) Tyrosine phosphorylation within the intrinsically disordered cytosolic domains of the B-Cell receptor: an NMR-based structural analysis. PLoS ONE 9:e96199

    PubMed  PubMed Central  Google Scholar 

  • McClenaghan C, Schewe M, Aryal P, Carpenter EP, Baukrowitz T, Tucker SJ (2016) Polymodal activation of the TREK-2 K2P channel produces structurally distinct open states. J Gen Physiol 147:497–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger H (1992) Transmembrane signaling: the joy of aggregation. J Immunol 149:1477–1487

    CAS  PubMed  Google Scholar 

  • Midic U, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2009) Protein disorder in the human diseasome: unfoldomics of human genetic diseases. BMC Genomics 10:S12

    PubMed  PubMed Central  Google Scholar 

  • Miller P, Kemp PJ, Peers C (2005) Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1. Biochem Biophys Res Commun 331:1253–1256

    CAS  PubMed  Google Scholar 

  • Minezaki Y, Homma K, Nishikawa K (2007) Intrinsically disordered regions of human plasma membrane proteins preferentially occur in the cytoplasmic segment. J Mol Biol 368:902–913

    CAS  PubMed  Google Scholar 

  • Mustafa M, Mirza A, Kannan N (2011) Conformational regulation of the EGFR kinase core by the juxtamembrane and C-terminal tail: a molecular dynamics study. Proteins 79:99–114

    CAS  PubMed  Google Scholar 

  • Na I, Kong MJ, Straight S, Pinto JR, Uversky VN (2016) Troponins, intrinsic disorder, and cardiomyopathy. Biol Chem 397:731–751

    CAS  PubMed  Google Scholar 

  • Narasumani M, Harrison PM (2018) Discerning evolutionary trends in post- translational modification and the effect of intrinsic disorder: analysis of methylation, acetylation and ubiquitination sites in human proteins. PLoS Comput Biol 14:e1006349

    PubMed  PubMed Central  Google Scholar 

  • Necci M, Quaglia F, Piovesan D, Tabaro F, Mi I, Oldfield CJ et al (2017) DisProt 7. 0 : a major update of the database of ˇ c Radoslav Davidovi c. Nucleic Acids Res. 45:219–227

    Google Scholar 

  • Nerenberg PS, Jo B, So C, Tripathy A, Head-Gordon T (2012) Optimizing solute-water van der Waals interactions to reproduce solvation free energies. J Phys Chem B 116:4524–4534

    CAS  PubMed  Google Scholar 

  • Nespoulous C, Rofidal V, Sommerer N, Hem S, Rossignol M (2012) Phosphoproteomic analysis reveals major default phosphorylation sites outside long intrinsically disordered regions of Arabidopsis plasma membrane proteins. Proteome Sci 10:1–11

    Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Liu CW, Jose J, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta 2 -adrenergic receptor activation. Cell 152:532–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    CAS  PubMed  Google Scholar 

  • Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1–S1

    PubMed  PubMed Central  Google Scholar 

  • Olsson S, Frellsen J, Boomsma W, Mardia KV, Hamelryck T (2013) Inference of structure ensembles of flexible biomolecules from sparse, averaged data. PLoS ONE 8:1–7

    Google Scholar 

  • Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, Lax I (2000) FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol 20:979–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega E (1995) How do multichain immune recognition receptors signal? A structural hypothesis. Mol Immunol 32:941–945

    CAS  PubMed  Google Scholar 

  • Ostermaier MK, Peterhans C, Jaussi R, Deupi X, Standfuss J (2014) Functional map of arrestin-1 at single amino acid resolution. Proc Natl Acad Sci USA 111:1825–1830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papaleo E, Camilloni C, Teilum K, Vendruscolo M, Lindorff-larsen K (2018) Molecular dynamics ensemble refinement of the heterogeneous native state of NCBD using chemical shifts and NOEs. Peer J 6:1–24

    Google Scholar 

  • Papoian GA (2008) Proteins with weakly funneled energy landscapes challenge the classical structure–function paradigm. PNAS 105:14237–14238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pegan S, Tan J, Huang A, Slesinger PA, Riek R, Choe S (2007) NMR studies of interactions between C-terminal tail of Kir2.1 channel and PDZ1,2 domains of PSD95. Biochemistry 46:5315–5322

    CAS  PubMed  Google Scholar 

  • Pejaver V, Hsu W-L, Xin F, Dunker AK, Uversky VN, Radivojac P (2014) The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Sci 23:1077–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng WC, Lin X, Torres J (2009) The strong dimerization of the transmembrane domain of the fibroblast growth factor receptor (FGFR) is modulated by C-terminal juxtamembrane residues. Protein Sci 18:450–459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Mizianty MJ, Xue B, Kurgan L, Uversky VN (2012) More than just tails: intrinsic disorder in histone proteins. Mol BioSyst 8:1886–1901

    CAS  PubMed  Google Scholar 

  • Peng Z, Sakai Y, Kurgan L, Sokolowski B, Uversky V (2014) Intrinsic disorder in the BK channel and its interactome. PLoS ONE 9:e94331

    PubMed  PubMed Central  Google Scholar 

  • Peng Z, Yan J, Fan X, Mizianty MJ, Xue B, Wang K, Hu G, Uversky VN, Kurgan L (2015) Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life. Cell Mol Life Sci 72:137–151

    CAS  PubMed  Google Scholar 

  • Perez A, MacCallum JL, Dill KA (2015) Accelerating molecular simulations of proteins using Bayesian inference on weak information. Proc Natl Acad Sci USA 112:11846–11851

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piana S, Donchev AG, Robustelli P, Shaw DE (2015) Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J Phys Chem B 119:5113–5123

    CAS  PubMed  Google Scholar 

  • Pitera JW, Chodera JD (2012) On the use of experimental observations to bias simulated ensembles. J Chem Theory Comput 8:3445–3451

    CAS  PubMed  Google Scholar 

  • Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futreal PA, Stratton MR, Trent JM (2007) Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 26:7158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popot JL, Engelman DM (1990) Membrane protein folding and oligomerization: the two-stage model. Biochemistry 29:4031–4037

    CAS  PubMed  Google Scholar 

  • Popot J-L, Engelman DM (2016) Membranes do not tell proteins how to fold. Biochemistry 55:5–18

    CAS  PubMed  Google Scholar 

  • Popovic M, Zlatev V, Hodnik V, Anderluh G, Felli IC, Pongor S, Pintar A (2012) Flexibility of the PDZ-binding motif in the micelle-bound form of Jagged-1 cytoplasmic tail. Biochim Biophys Acta Biomembr 1818:1706–1716

    CAS  Google Scholar 

  • Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł (2019) Targeting cellular trafficking of fibroblast growth factor receptors as a strategy for selective cancer treatment. J Clin Med 8:7

    Google Scholar 

  • Pryor EE, Wiener MC (2014) A critical evaluation of in silico methods for detection of membrane protein intrinsic disorder. Biophys J 106:1638–1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13:55–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Receveur-Bréchot V, Bourhis J, Uversky VN, Canard B, Longhi S (2006) Assessing protein disorder and induced folding. Proteins Struct Funct Bioinform 62:24–45

    Google Scholar 

  • Reddy PJ, Ray S, Srivastava S (2015) The quest of the human proteome and the missing proteins: digging deeper. Omi J Integr Biol 19:276–282

    CAS  Google Scholar 

  • Reichert MC, Lammert F (2018) ABCB4 gene aberrations in human liver disease: an evolving spectrum. Sem Liver Dis 11:299–307

    Google Scholar 

  • Reth M (1989) Antigen receptor tail clue. Nature 338:383–384

    CAS  PubMed  Google Scholar 

  • Rieping W, Habeck M, Nilges M (2005) Inferential structure determination. Science 309:303–306

    CAS  PubMed  Google Scholar 

  • Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci 115:E4758–E4766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK (2006) Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA 103:8390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders CR, Kuhn Hoffmann A, Gray DN, Keyes MH, Ellis CD (2004) French swimwear for membrane proteins. ChemBioChem 5:423–426

    CAS  PubMed  Google Scholar 

  • Santamaria N, Alhothali M, Alfonso MH, Breydo L, Uversky VN (2017) Intrinsic disorder in proteins involved in amyotrophic lateral sclerosis. Cell Mol Life Sci 74:1297–1318

    CAS  PubMed  Google Scholar 

  • Sarabipour S, Hristova K (2015) FGFR3 unliganded dimer stabilization by the juxtamembrane domain. J Mol Biol 427:1705–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schad E, Tompa P, Hegyi H (2012) The relationship between proteome size, structural disorder and organism complexity. Genome Biol 12:R120

    Google Scholar 

  • Schlüter H, Apweiler R, Holzhütter H-G, Jungblut PR (2009) Finding one’s way in proteomics: a protein species nomenclature. Chem Cent J 3:11

    PubMed  PubMed Central  Google Scholar 

  • Schneider ER, Anderson EO, Gracheva EO, Sviatoslav N (2014) Temperature sensitivity of two-pore (K2P) potassium channels. Curr Top Membr 74:113–133

    PubMed  PubMed Central  Google Scholar 

  • Shevchuk R, Hub JS (2017) Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics. PLoS Comput Biol 13:1–27

    Google Scholar 

  • Showalter SA (2014) Intrinsically disordered proteins: methods for structure and dynamics studies. eMagRes 3:181–190

    CAS  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng W-C, Staus DP, Hilger D, Uysal S, Huang L, Paduch M, Tripathi-shukla P, Koide A, Koide S (2013) Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497(137):141

    Google Scholar 

  • Sickmeier M, Hamilton JA, LeGall T, Vacic V, Cortese MS, Tantos A, Szabo B, Tompa P, Chen J, Uversky VN, Obradovic Z, Dunker AK (2007) DisProt: the database of disordered proteins. Nucleic Acids Res 35:D786–D793

    CAS  PubMed  Google Scholar 

  • Sigalov AB (2008) Signaling chain homooligomerization (SCHOOL) model. In: Sigalov AB (ed) Multichain immune recognition receptor signaling. Advances in experimental medicine and biology, vol 640. Springer, New York, NY

    Google Scholar 

  • Sigalov AB (2010a) Membrane binding of intrinsically disordered proteins: critical importance of an appropriate membrane model. Self Nonself. 1:129–132

    PubMed  PubMed Central  Google Scholar 

  • Sigalov AB (2010b) Protein intrinsic disorder and oligomericity in cell signaling. Mol BioSyst 6:451–461

    CAS  PubMed  Google Scholar 

  • Sigalov AB (2010c) Unusual biophysics of immune signaling-related intrinsically disordered proteins. Self Nonself 1:271–281

    PubMed  PubMed Central  Google Scholar 

  • Sigalov AB (2011) Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. Prog Biophys Mol Biol 106:525–536

    CAS  PubMed  Google Scholar 

  • Sigalov AB (2012) Interplay between protein order, disorder and oligomericity in receptor signaling. Fuzziness. Springer, New York, pp 50–73

    Google Scholar 

  • Sigalov AB (2016) Structural biology of intrinsically disordered proteins: revisiting unsolved mysteries. Biochimie 125:112–118

    CAS  PubMed  Google Scholar 

  • Sigalov AB, Hendricks GM (2009) Membrane binding mode of intrinsically disordered cytoplasmic domains of T cell receptor signaling subunits depends on lipid composition. Biochem Biophys Res Commun 389:388–393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sigalov AB, Uversky VN (2011) Differential occurrence of protein intrinsic disorder in the cytoplasmic signaling domains of cell receptors. Self Nonself. 2:55–72

    PubMed  PubMed Central  Google Scholar 

  • Sigalov A, Aivazian D, Stern L (2004) Homooligomerization of the cytoplasmic domain of the T cell receptor ζ chain and of other proteins containing the immunoreceptor tyrosine-based activation motif. Biochemistry 43:2049–2061

    CAS  PubMed  Google Scholar 

  • Sigalov AB, Aivazian DA, Uversky VN, Stern LJ (2006) Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45:15731–15739

    CAS  PubMed  Google Scholar 

  • Sigalov AB, Zhuravleva AV, Orekhov VY (2007) Binding of intrinsically disordered proteins is not necessarily accompanied by a structural transition to a folded form. Biochimie 89:419–421

    CAS  PubMed  Google Scholar 

  • Singleton KL, Roybal KT, Sun Y, Fu G, Gascoigne NRJ, van Oers NSC, Wülfing C (2009) Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal. 2:ra15

    PubMed  PubMed Central  Google Scholar 

  • Smith LM, Kelleher NL, Linial M, Goodlett D, Langridge-Smith P, Goo YA, Safford G, Bonilla L, Kruppa G, Zubarev R (2013) Proteoform: a single term describing protein complexity. Nat Methods 10:186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:198–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solan JL, Lampe PD (2005) Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154–163

    CAS  PubMed  Google Scholar 

  • Stanley N, Esteban-Martín S, De Fabritiis G (2015) Progress in studying intrinsically disordered proteins with atomistic simulations. Prog Biophys Mol Biol 119:47–52

    CAS  PubMed  Google Scholar 

  • Stavropoulos I, Khaldi N, Davey NE, O’Brien K, Martin F, Shields DC (2012) Protein disorder and short conserved motifs in disordered regions are enriched near the cytoplasmic side of single-pass transmembrane proteins. PLoS ONE 7:1–8

    Google Scholar 

  • Steiner K, Schwab H (2012) Recent advances in rational approaches for enzyme engineering. Comput Struct Biotechnol J. 2:e201209010

    PubMed  PubMed Central  Google Scholar 

  • Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton EJ, Bradshaw RT, Orr CM, Frend B, Cragg MS, Tews I, Essex JW (2018) Article evaluating anti-CD32b F (ab) conformation using molecular dynamics and small-angle X-ray scattering. Biophys J 115:289–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tantos A, Han K-H, Tompa P (2012) Intrinsic disorder in cell signaling and gene transcription. Mol Cell Endocrinol 348:457–465

    CAS  PubMed  Google Scholar 

  • The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    PubMed Central  Google Scholar 

  • Thinn AMM, Wang Z, Zhu J (2018) The membrane-distal regions of integrin α cytoplasmic domains contribute differently to integrin inside-out activation. Sci Rep 8:1–17

    CAS  Google Scholar 

  • Tompa P (2012) Intrinsically disordered proteins: a 10-year recap. Trends Biochem Sci 37:509–516

    CAS  PubMed  Google Scholar 

  • Tompa P (2016) The principle of conformational signaling. Chem Soc Rev 45:4252–4284

    CAS  PubMed  Google Scholar 

  • Tompa P, Schad E, Tantos A, Kalmar L (2015) Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59

    CAS  PubMed  Google Scholar 

  • Turoverov KK, Kuznetsova IM, Uversky VN (2010) The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol 102:73–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tusnády GE, Dobson L, Tompa P (2015) Disordered regions in transmembrane proteins. Biochim Biophys Acta Biomembr 1848:2839–2848

    Google Scholar 

  • Uhlén M, Björling E, Agaton C, Szigyarto K, Amini B, Andersen E, Andersson A-C, Angelidou P, Asplund A, Asplund C (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 4:1920–1932

    PubMed  Google Scholar 

  • Uings IJ, Farrow SN (2000) Cell receptors and cell signalling. J Clin Pathol Mol Pathol 53:295–299

    CAS  Google Scholar 

  • Uversky VN (2002a) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2002b) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    CAS  PubMed  Google Scholar 

  • Uversky VN (2003) Protein folding revisited. A polypeptide chain at the folding–misfolding–nonfolding cross-roads : which way to go? Cell Mol Life Sci 60:1852–1871

    CAS  PubMed  Google Scholar 

  • Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 14:5188–5238

    CAS  Google Scholar 

  • Uversky VN (2010a) The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J Biomed Biotechnol. 2010:568068

    PubMed  Google Scholar 

  • Uversky VN (2010b) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D2 concept. Expert Rev Proteomics 7:543–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2010c) Mysterious oligomerization of the amyloidogenic proteins. FEBS J 277:2940–2953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2013a) Unusual biophysics of intrinsically disordered proteins. Biochim Biophys Acta Proteins Proteomics. 1834:932–951

    CAS  Google Scholar 

  • Uversky VN (2013b) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22:693–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2013c) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm Des 19:4191–4213

    CAS  PubMed  Google Scholar 

  • Uversky VN (2013d) Under-folded proteins: conformational ensembles and their roles in protein folding, function, and pathogenesis. Biopolymers 99:870–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2014a) Wrecked regulation of intrinsically disordered proteins in diseases: pathogenicity of deregulated regulators. Front Mol Biosci 1:6

    PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2014b) The triple power of D (3): protein intrinsic disorder in degenerative diseases. Front Biosci (Landmark Ed) 19:181–258

    CAS  Google Scholar 

  • Uversky VN (2015a) Functional roles of transiently and intrinsically disordered regions within proteins. FEBS J 282:1182–1189

    CAS  PubMed  Google Scholar 

  • Uversky VN (2015b) Biophysical methods to investigate intrinsically disordered proteins: avoiding an “elephant and blind men” situation. Adv Exp Med Biol 870:215–260

    CAS  PubMed  Google Scholar 

  • Uversky VN (2016a) Dancing protein clouds: the strange biology and chaotic physics of intrinsically disordered proteins. J Biol Chem 291:6681–6688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky V (2016b) P53 proteoforms and intrinsic disorder: an illustration of the protein structure–function continuum concept. Int J Mol Sci 17:1874

    PubMed Central  Google Scholar 

  • Uversky VN (2017a) Looking at the recent advances in understanding α-synuclein and its aggregation through the proteoform prism. F1000Research 6:525

    PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2017b) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30

    CAS  PubMed  Google Scholar 

  • Uversky VN (2017c) Protein intrinsic disorder-based liquid–liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 239:97–114

    CAS  PubMed  Google Scholar 

  • Uversky VN (2018) Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Brief Funct Genomics. https://doi.org/10.1093/bfgp/ely023

    Article  Google Scholar 

  • Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta Proteins Proteomics 1804:1231–1264

    CAS  Google Scholar 

  • Uversky VN, Dunker AK (2012) Multiparametric analysis of intrinsically disordered proteins: looking at intrinsic disorder through compound eyes. Anal Chem 84:2096–2104

    CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins Struct Funct Genet 41:415–427

    CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics. 10:S7

    PubMed  PubMed Central  Google Scholar 

  • Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114:6844–6879

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN, Kuznetsova IM, Turoverov KK, Zaslavsky B (2015) Intrinsically disordered proteins as crucial constituents of cellular aqueous two phase systems and coacervates. FEBS Lett 589:15–22

    CAS  PubMed  Google Scholar 

  • Uversky VN, Na I, Schenck KSL (2017) Highly disordered proteins in prostate cancer. Curr Protein Peptide Sci 18:453–481

    CAS  Google Scholar 

  • Vacic V, Uversky VN, Dunker AK, Lonardi S (2007) Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinform 8:211

    Google Scholar 

  • Vacic V, Markwick PRL, Oldfield CJ, Zhao X, Haynes C, Uversky VN, Iakoucheva LM (2012) Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput Biol 8:e1002709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallurupalli P, Chakrabarti N, Pomès R, Kay LE (2016) Atomistic picture of conformational exchange in a T4 lysozyme cavity mutant: an experiment-guided molecular dynamics study. Chem Sci. 7(6):3602–3613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, Kim PM, Kriwacki RW, Oldfield CJ, Pappu RV, Tompa P, Uversky VN, Wright PE, Babu MM (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    PubMed  PubMed Central  Google Scholar 

  • van Rhijn BWG, Lurkin I, Radvanyi F, Kirkels WJ, van der Kwast TH, Zwarthoff EC (2001) The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res 61:1265–1268

    PubMed  Google Scholar 

  • Varma R, Campi G, Yokosuka T, Saito T, Dustin ML (2006) T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Adams MD et al (2001) The sequence of the human genome. Science 291:1304–1351

    CAS  PubMed  Google Scholar 

  • Vihinen M, Torkkila E, Riikonen P (1994) Accuracy of protein flexibility predictions. Proteins Struct Funct Genet 149:141–149

    Google Scholar 

  • Vlachová V, Teisinger J, Susánková K, Lyfenko A, Ettrich R, Vyklický L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23:1340–1350

    PubMed  PubMed Central  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    CAS  PubMed  Google Scholar 

  • Wells A (1999) EGF receptor. Int J Biochem Cell Biol 31:637–643

    CAS  PubMed  Google Scholar 

  • West GM, Chien EYT, Katritch V, Gatchalian J, Chalmers MJ, Stevens RC, Griffin PR (2011) Ligand-dependent perturbation of the conformational ensemble for the GPCR β2adrenergic receptor revealed by HDX. Structure 19:1424–1432

    CAS  PubMed  PubMed Central  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    CAS  PubMed  Google Scholar 

  • White SH, Ladokhin AS, Jayasinghe S, Hristova K (2001) How membranes shape protein structure. J Biol Chem 102:17–40

    Google Scholar 

  • Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267:1619–1620

    CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ (2009) Linking folding and binding. Curr Opin Struct Biol 19:31–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16:18–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007a) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res. 6:1882–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007b) Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. J Proteome Res. 6:1917–1932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Gagnon E, Call ME, Schnell JR, Schwieters CD, Carman CV, Chou JJ, Wucherpfennig KW (2008) Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135:702–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue B, Uversky VN (2013) Structural characterizations of phosphorylatable residues in transmembrane proteins from Arabidopsis thaliana. Intrinsically Disord Proteins 1:e25713–e25713

    PubMed  PubMed Central  Google Scholar 

  • Xue B, Li L, Meroueh SO, Uversky VN, Dunker AK (2009) Analysis of structured and intrinsically disordered regions of transmembrane proteins. Mol Biosyst 5:1688–1702

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue B, Dunker AK, Uversky VN (2012a) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30(2):137–149

    CAS  PubMed  Google Scholar 

  • Xue B, Dunker AK, Uversky VN (2012b) The roles of intrinsic disorder in orchestrating the Wnt-pathway. J Biomol Struct Dyn 29:843–861

    CAS  PubMed  Google Scholar 

  • Xue B, Romero PR, Noutsou M, Maurice MM, Rüdiger SGD, William AM Jr, Mizianty MJ, Kurgan L, Uversky VN, Dunker AK (2013) Stochastic machines as a colocalization mechanism for scaffold protein function. FEBS Lett 587:1587–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Ma Y, Page RC, Misra S, Plow EF, Qin J (2009) Structure of an integrin _IIb_3 transmembrane cytoplasmic heterocomplex provides insight into integrin activation. PNAS 106:17729–17734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Flynn AD (2016) Drugging membrane protein interactions. Annu Rev Biomed Eng 18:51–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Slusky JS, Berger BW, Walters RS, Vilaire G, Litvinov RI, Lear JD, Caputo GA, Bennett JS, DeGrado WF (2012) Computational design of peptides that target transmembrane helices. Science 315:1817–1823

    Google Scholar 

  • Yu K, Herr AB, Waksman G, Ornitz DM (2000) Loss of fibroblast growth factor receptor 2 ligand-binding specificity in Apert syndrome. Proc Natl Acad Sci USA 97:14536–14541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidel-bar R, Itzkovitz S, Ma A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nature 9:858–867

    CAS  Google Scholar 

  • Zhao C, Shukla D (2018) SAXS-guided enhanced unbiased sampling for structure determination of proteins and complexes. Sci Rep 8:1–13

    Google Scholar 

  • Zhou J, Zhao S, Dunker AK (2018) Intrinsically disordered proteins link alternative splicing and post-translational modifications to complex cell signaling and regulation. J Mol Biol 430:2342–2359

    CAS  PubMed  Google Scholar 

  • Zwanzig R, Szabo A, Bagchi B (1992) Levinthal’ s paradox. Proc Natl Acad Sci USA 89:20–22

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

R.A. and A.S. would like to thank Krishnakanth Baratam for discussions and insights on integrative structural modelling aspects of IDPRs. A.S. thanks the funding from the Ministry of Human Resource Development of India and the early career grant from the Department of Science and Technology of India (DST-India). R.A. thanks the DST-India for her national postdoctoral fellowship. This research is also supported by the Department of Biotechnology, Government of India in the form of IISc-DBT partnership programme. Support from FIST program sponsored by the Department of Science and Technology and UGC, India – Centre for Advanced Studies and Ministry of Human Resource Development, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appadurai, R., Uversky, V.N. & Srivastava, A. The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. J Membrane Biol 252, 273–292 (2019). https://doi.org/10.1007/s00232-019-00069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-019-00069-2

Keywords

Navigation