Skip to main content

Advertisement

Log in

The Actin Cytoskeleton in Myelinating Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Myelinating cells of both the peripheral and central nervous systems (CNSs) undergo dramatic cytoskeletal reorganization in order to differentiate and produce myelin. Myelinating oligodendrocytes in the CNS show a periodic actin pattern, demonstrating tight regulation of actin. Furthermore, recent data demonstrate that actin polymerization drives early cell differentiation and that actin depolymerization drives myelin wrapping. Dysregulation of the actin cytoskeleton in myelinating cells is seen in some disease states. This review highlights the cytoskeletal molecules that regulate differentiation of and myelination by cells of the PNS and CNS, informing our understanding of neural development, in particular myelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D’Este E, Kamin D, Velte C, Göttfert F, Simons M, Hell SW (2016) Subcortical cytoskeleton periodicity throughout the nervous system. Sci Rep 6:22741

    PubMed  PubMed Central  Google Scholar 

  2. Hauser M, Yan R, Li W, Repina NA, Schaffer DV, Xu K (2018) The spectrin-actin-based periodic cytoskeleton as a conserved nanoscale scaffold and ruler of the neural stem cell lineage. Cell Rep 24(6):1512–1522

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18(5):683–689

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, Manira AE, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18:628–630

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, Liu Y, Tsingalia A, Jin L, Zhang PW, Pellerin L, Magistretti PJ, Rothstein JD (2012) Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 487(7408):443–448

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave K-A (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521

    PubMed  PubMed Central  Google Scholar 

  7. Ackerman SD, Monk KR (2016) The scales and tales of myelination: using zebrafish and mouse to study myelinating glia. Brain Res 1641(Pt A):79–91

    CAS  PubMed  Google Scholar 

  8. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682

    CAS  PubMed  Google Scholar 

  9. Nawaz S, Sanchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Bruckner BR, Alexopoulos I, Czopka T, Jung SY, Rhee JS, Janshoff A, Witke W, Schaap IA, Lyons DA, Simons M (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34(2):139–151

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zuchero JB, Fu M-M, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C, Leonoudakis D, Leonoudakus D, Lariosa-Willingham K, Kronenberg G, Gertz K, Soderling SH, Miller RH, Barres BA (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34(2):152–167

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bacon C, Lakics V, Machesky L, Rumsby M (2007) N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination. Glia 55(8):844–858

    PubMed  Google Scholar 

  12. Etienne-Manneville S (2008) Polarity proteins in glial cell functions. Curr Opin Neurobiol 18(5):488–494

    CAS  PubMed  Google Scholar 

  13. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21(1):247–269

    CAS  PubMed  Google Scholar 

  14. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420(6916):629–635

    CAS  PubMed  Google Scholar 

  15. Liang X, Draghi NA, Resh MD (2004) Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J Neurosci 24(32):7140–7149

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Thurnherr T, Benninger Y, Wu X, Chrostek A, Krause SM, Nave KA, Franklin RJ, Brakebusch C, Suter U, Relvas JB (2006) Cdc42 and Rac1 signaling are both required for and act synergistically in the correct formation of myelin sheaths in the CNS. J Neurosci 26(40):10110–10119

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Benninger Y, Thurnherr T, Pereira JA, Krause S, Wu X, Chrostek-Grashoff A, Herzog D, Nave K-A, Franklin RJM, Meijer D, Brakebusch C, Suter U, Relvas JB (2007) Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development. J Cell Biol 177(6):1051–1061

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nodari A, Zambroni D, Quattrini A, Court FA, D’Urso A, Recchia A, Tybulewicz VLJ, Wrabetz L, Feltri ML (2007) Beta1 integrin activates Rac1 in Schwann cells to generate radial lamellae during axonal sorting and myelination. J Cell Biol 177(6):1063–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29(21):6860–6870

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Domènech-Estévez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in the PNS. J Neurosci 36(16):4506–4521

    PubMed  PubMed Central  Google Scholar 

  21. Kim H-J, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK (2006) WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci 26(21):5849–5859

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin F, Dong B, Georgiou J, Jiang Q, Zhang J, Bharioke A, Qiu F, Lommel S, Feltri ML, Wrabetz L, Roder JC, Eyer J, Chen X, Peterson AC, Siminovitch KA (2011) N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 138(7):1329–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Novak N, Bar V, Sabanay H, Frechter S, Jaegle M, Snapper SB, Meijer D, Peles E (2011) N-WASP is required for membrane wrapping and myelination by Schwann cells. J Cell Biol 192(2):243–250

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Finkel T, Theriot JA, Dise KR, Tomaselli GF, Goldschmidt-Clermont PJ (1994) Dynamic actin structures stabilized by profilin. Proc Natl Acad Sci USA 91(4):1510–1514

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Witke W, Podtelejnikov AV, Di Nardo A, Sutherland JD, Gurniak CB, Dotti C, Mann M (1998) In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. EMBO J 17(4):967–976

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Montani L, Buerki-Thurnherr T, de Faria JP, Pereira JA, Dias NG, Fernandes R, Gonçalves AF, Braun A, Benninger Y, Böttcher RT, Costell M, Nave K-A, Franklin RJM, Meijer D, Suter U, Relvas JB (2014) Profilin 1 is required for peripheral nervous system myelination. Development 141(7):1553–1561

    CAS  PubMed  Google Scholar 

  27. Azevedo MM, Domingues HS, Cordelières FP, Sampaio P, Seixas AI, Relvas JB (2018) Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 138(20):4443

    Google Scholar 

  28. Waggener CT, Dupree JL, Elgersma Y, Fuss B (2013) CaMKIIβ regulates oligodendrocyte maturation and CNS myelination. J Neurosci 33(25):10453–10458

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Negro S, Stazi M, Marchioretto M, Tebaldi T, Rodella U, Duregotti E, Gerke V, Quattrone A, Montecucco C, Rigoni M, Viero G (2018) Hydrogen peroxide is a neuronal alarmin that triggers specific RNAs, local translation of annexin A2, and cytoskeletal remodeling in Schwann cells. RNA 24(7):915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu A, Muggironi M, Marin-Husstege M, Casaccia-Bonnefil P (2003) Oligodendrocyte process outgrowth in vitro is modulated by epigenetic regulation of cytoskeletal severing proteins. Glia 44(3):264–274

    PubMed  Google Scholar 

  31. Sparrow N, Manetti ME, Bott M, Fabianac T, Petrilli A, Bates ML, Bunge MB, Lambert S, Fernandez-Valle C (2012) The actin-severing protein cofilin is downstream of neuregulin signaling and is essential for Schwann cell myelination. J Neurosci 32(15):5284–5297

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Andrianantoandro E, Pollard TD (2006) Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 24(1):13–23

    CAS  PubMed  Google Scholar 

  33. Nag S, Larsson M, Robinson RC, Burtnick LD (2013) Gelsolin: the tail of a molecular gymnast. Cytoskeleton 70(7):360–384

    CAS  PubMed  Google Scholar 

  34. Tanaka J, Sobue K (1994) Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells. J Neurosci 14(3):1038–1052

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lena JY, Legrand CH, Faivre-Sarrailh C, Sarlieve LL, Ferraz C, Rabie A (1994) High gelsolin content of developing oligodendrocytes. Int J Dev Neurosci 12:375–386

    CAS  PubMed  Google Scholar 

  36. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayashi-Takagi A, Araki Y, Nakamura M, Vollrath B, Duron SG, Yan Z, Kasai H, Huganir RL, Campbell DA, Sawa A (2014) PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci USA 111(17):6461–6466

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97(1):185–189

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan X, Chang X, Leung C, Zhou Z, Cao F, Xie W, Jia Z (2015) PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation. Mol Brain 8(1):36

    PubMed  PubMed Central  Google Scholar 

  40. Zenke FT, King CC, Bohl BP, Bokoch GM (1999) Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem 274(46):32565–32573

    CAS  PubMed  Google Scholar 

  41. Tang Y, Zhou H, Chen A, Pittman RN, Field J (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275(13):9106–9109

    CAS  PubMed  Google Scholar 

  42. Papakonstanti EA, Stournaras C (2002) Association of PI-3 kinase with PAK1 leads to actin phosphorylation and cytoskeletal reorganization. Mol Biol Cell 13(8):2946–2962

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1(5):253–259

    CAS  PubMed  Google Scholar 

  44. Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J 16(21):6426–6438

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 162(2):281–291

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10(11):1356–1364

    CAS  PubMed  Google Scholar 

  47. Huang W, Zhou Z, Asrar S, Henkelman M, Xie W, Jia Z (2011) p21-Activated Kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol Cell Biol 31(3):388–403

    CAS  PubMed  Google Scholar 

  48. Maglorius Renkilaraj MRL, Baudouin L, Wells CM, Doulazmi M, Wehrlé R, Cannaya V, Bachelin C, Barnier J-V, Jia Z, Nait Oumesmar B, Dusart I, Bouslama-Oueghlani L (2017) The intellectual disability protein PAK3 regulates oligodendrocyte precursor cell differentiation. Neurobiol Dis 98:137–148

    CAS  PubMed  Google Scholar 

  49. Hu B, Arpag S, Zhang X, Möbius W, Werner H, Sosinsky G, Ellisman M, Zhang Y, Hamilton A, Chernoff J, Li J (2016) Tuning PAK activity to rescue abnormal myelin permeability in HNPP. PLoS Genet 12(9):e1006290

    PubMed  PubMed Central  Google Scholar 

  50. Snaidero N, Velte C, Myllykoski M, Raasakka A, Ignatev A, Werner HB, Erwig MS, Möbius W, Kursula P, Nave K-A, Simons M (2017) Antagonistic functions of MBP and CNP establish cytosolic channels in CNS myelin. Cell Rep 18(2):314–323

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Velumian AA, Samoilova M, Fehlings MG (2011) Visualization of cytoplasmic diffusion within living myelin sheaths of CNS white matter axons using microinjection of the fluorescent dye lucifer yellow. Neuroimage 56(1):27–34

    CAS  PubMed  Google Scholar 

  52. Snaidero N, Mobius W, Czopka T, Hekking LH, Mathisen C, Verkleij D, Goebbels S, Edgar J, Merkler D, Lyons DA, Nave KA, Simons M (2014) Myelin membrane wrapping of CNS axons by PI(3,4,5)P3-dependent polarized growth at the inner tongue. Cell 156(1):277–290

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave K-A (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374

    CAS  PubMed  Google Scholar 

  54. Locatelli G, Baggiolini A, Schreiner B, Palle P, Waisman A, Becher B, Buch T (2015) Mature oligodendrocytes actively increase in vivo cytoskeletal plasticity following CNS damage. J Neuroinflammation 12(1):62

    PubMed  PubMed Central  Google Scholar 

  55. Han B, Zhao J-Y, Wang W-T, Li Z-W, He A-P, Song X-Y (2017) Cdc42 promotes Schwann cell proliferation and migration through Wnt/β-catenin and p38 MAPK signaling pathway after sciatic nerve injury. Neurochem Res 42(5):1317–1324

    CAS  PubMed  Google Scholar 

  56. Kun A, Canclini L, Rosso G, Bresque M, Romeo C, Hanusz A, Cal K, Calliari A, Silveira JS, Sotelo JR (2012) F-actin distribution at nodes of Ranvier and Schmidt–Lanterman incisures in mammalian sciatic nerves. Cytoskeleton 69(7):486–495

    CAS  PubMed  Google Scholar 

  57. Lee S, Amici S, Tavori H, Zeng WM, Freeland S, Fazio S, Notterpek L (2014) PMP22 is critical for actin-mediated cellular functions and for establishing lipid rafts. J Neurosci 34(48):16140–16152

    PubMed  PubMed Central  Google Scholar 

  58. Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A, Kirschner J, Korinthenberg R, Ketelsen U-P, Battaloglu E, Parman Y, Nicholson G, Ouvrier R, Seeger J, De Jonghe P, Weis J, Krüttgen A, Rudnik-Schöneborn S, Bergmann C, Suter U, Zerres K, Timmerman V, Relvas JB, Senderek J (2007) Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 81(1):158–164

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Melendez-Vasquez CV, Einheber S, Salzer JL (2004) Rho kinase regulates schwann cell myelination and formation of associated axonal domains. J Neurosci 24(16):3953–3963

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tomassy GS, Berger DR, Chen H-H, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344(6181):319–324

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hess A, Young JZ (1949) Correlation of internodal length and fibre diameter in the central nervous system. Nature 164(4168):490

    CAS  PubMed  Google Scholar 

  62. Murray JA, Blakemore WF (1980) The relationship between internodal length and fibre diameter in the spinal cord of the cat. J Neurol Sci 45(1):29–41

    CAS  PubMed  Google Scholar 

  63. Ibrahim M, Butt AM, Berry M (1995) Relationship between myelin sheath diameter and internodal length in axons of the anterior medullary velum of the adult rat. J Neurol Sci 133(1):119–127

    CAS  PubMed  Google Scholar 

  64. Webster HD, Palkovits CG, Stoner GL, Favilla JT, Frail DE, Braun PE (1983) Myelin-associated glycoprotein: electron microscopic immunocytochemical localization in compact developing and adult central nervous system myelin. J Neurochem 41(5):1469–1479

    CAS  PubMed  Google Scholar 

  65. Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Blüthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA (1994) Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 13(1):229–246

    CAS  PubMed  Google Scholar 

  66. Bartsch U, Montag D, Bartsch S, Schachner M (1995) Multiply myelinated axons in the optic nerve of mice deficient for the myelin-associated glycoprotein. Glia 14(2):115–122

    CAS  PubMed  Google Scholar 

  67. Palandri A, Salvador VR, Wojnacki J, Vivinetto AL, Schnaar RL, Lopez PHH (2015) Myelin-associated glycoprotein modulates apoptosis of motoneurons during early postnatal development via NgR/p75(NTR) receptor-mediated activation of RhoA signaling pathways. Cell Death Dis 6(9):e1876–e1876

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation Graduate Research Fellowship Program DGE-1553798 (TLB) and National Institute of Health RO1 #82203 (WBM). The authors thank the members of the Macklin lab for valuable discussion and feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy B. Macklin.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Vittorio Gallo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, T.L., Macklin, W.B. The Actin Cytoskeleton in Myelinating Cells. Neurochem Res 45, 684–693 (2020). https://doi.org/10.1007/s11064-019-02753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02753-0

Keywords

Navigation