1932

Abstract

The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-041015-055549
2016-05-20
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-041015-055549.html?itemId=/content/journals/10.1146/annurev-immunol-041015-055549&mimeType=html&fmt=ahah

Literature Cited

  1. Diefenbach A, Colonna M, Koyasu S. 1.  2014. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41:354–65 [Google Scholar]
  2. Artis D, Spits H. 2.  2015. The biology of innate lymphoid cells. Nature 517:293–301 [Google Scholar]
  3. De Obaldia ME, Bhandoola A. 3.  2015. Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu. Rev. Immunol. 33:607–42 [Google Scholar]
  4. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP. 4.  et al. 2013. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13:145–49 [Google Scholar]
  5. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. 5.  2014. A committed precursor to innate lymphoid cells. Nature 508:397–401 [Google Scholar]
  6. Ishizuka IE, Chea S, Gudjonson H, Constantinides MG, Dinner AD. 6.  et al. 2016. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissueinducer cell lineage. Nat. Immunol. 17269–76
  7. Yoshida H, Honda K, Shinkura R, Adachi S, Nishikawa S. 7.  et al. 1999. IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11:643–55 [Google Scholar]
  8. Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K. 8.  et al. 2001. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167:2511–21 [Google Scholar]
  9. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. 9.  1996. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3 cells to colonize lymph nodes. PNAS 93:11019–24 [Google Scholar]
  10. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S. 10.  et al. 1999. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–6 [Google Scholar]
  11. Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T. 11.  et al. 2014. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–56 [Google Scholar]
  12. Yu X, Wang Y, Deng M, Li Y, Ruhn KA. 12.  et al. 2014. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3e04406
  13. Yang Q, Li F, Harly C, Xing S, Ye L. 13.  et al. 2015. TCF-1 upregulation identifies early innate lymphoid progenitors in the bone marrow. Nat. Immunol. 16:1044–50 [Google Scholar]
  14. Savage AK, Constantinides MG, Han J, Picard D, Martin E. 14.  et al. 2008. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403 [Google Scholar]
  15. Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W. 15.  et al. 2008. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9:1055–64 [Google Scholar]
  16. Bando JK, Liang HE, Locksley RM. 16.  2015. Identification and distribution of developing innate lymphoid cells in the fetal mouse intestine. Nat. Immunol. 16:153–60 [Google Scholar]
  17. Xu W, Domingues RG, Fonseca Pereira D, Ferreira M, Ribeiro H. 17.  et al. 2015. NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep. 10:2043–54 [Google Scholar]
  18. Constantinides MG, Bendelac A. 18.  2013. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25:161–67 [Google Scholar]
  19. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN. 19.  et al. 2014. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659 [Google Scholar]
  20. Peng H, Jiang X, Chen Y, Sojka DK, Wei H. 20.  et al. 2013. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J. Clin. Investig. 123:1444–56 [Google Scholar]
  21. Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL. 21.  2011. Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118:5439–47 [Google Scholar]
  22. Carotta S, Pang SHM, Nutt SL, Belz GT. 22.  2011. Identification of the earliest NK-cell precursor in the mouse BM. Blood 117:5449–52 [Google Scholar]
  23. Constantinides MG, Gudjonson H, McDonald BD, Ishizuka IE, Verhoef PA. 23.  et al. 2015. PLZF expression maps the early stages of ILC1 lineage development. PNAS 112:5123–28 [Google Scholar]
  24. Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M. 24.  2014. Cutting edge: Salivary gland NK cells develop independently of Nfil3 in steady-state. J. Immunol. 192:4487–91 [Google Scholar]
  25. Nechanitzky R, Akbas D, Scherer S, Györy I, Hoyler T. 25.  et al. 2013. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat. Immunol. 14:867–75 [Google Scholar]
  26. Kuo TC, Schlissel MS. 26.  2009. Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr. Opin. Immunol. 21:173–78 [Google Scholar]
  27. Boos MD, Yokota Y, Eberl G, Kee BL. 27.  2007. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204:1119–30 [Google Scholar]
  28. Verykokakis M, Zook EC, Kee BL. 28.  2014. ID’ing innate and innate-like lymphoid cells. Immunol. Rev. 261:177–97 [Google Scholar]
  29. Treiber T, Mandel EM, Pott S, Györy I, Firner S. 29.  et al. 2010. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32:714–25 [Google Scholar]
  30. Cherrier M, Sawa S, Eberl G. 30.  2012. Notch, Id2, and RORγt sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J. Exp. Med. 209:729–40 [Google Scholar]
  31. Hoyler T, Klose CSN, Souabni A, Turqueti-Neves A, Pfeifer D. 31.  et al. 2012. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–48 [Google Scholar]
  32. Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J. 32.  et al. 2014. Nfil3 is required for the development of all innate lymphoid cell subsets. J. Exp. Med. 211:1733–40 [Google Scholar]
  33. Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L. 33.  et al. 2015. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat. Immunol. 16:599–608 [Google Scholar]
  34. Aliahmad P, de la Torre B, Kaye J. 34.  2010. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue inducer cell and NK cell lineages. Nat. Immunol. 11:945–52 [Google Scholar]
  35. Male V, Nisoli I, Gascoyne DM, Brady HJM. 35.  2012. E4BP4: an unexpected player in the immune response. Trends Immunol. 33:98–102 [Google Scholar]
  36. Aliahmad P, Seksenyan A, Kaye J. 36.  2012. The many roles of TOX in the immune system. Curr. Opin. Immunol. 24:173–77 [Google Scholar]
  37. Malhotra N, Narayan K, Cho OH, Sylvia KE, Yin C. 37.  et al. 2013. A network of high-mobility group box transcription factors programs innate interleukin-17 production. Immunity 38:681–93 [Google Scholar]
  38. Tachibana M, Tenno M, Tezuka C, Sugiyama M, Yoshida H, Taniuchi I. 38.  2011. Runx1/Cbfβ2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J. Immunol. 186:1450–57 [Google Scholar]
  39. Weber BN, Chi AWS, Chavez A, Yashiro-Ohtani Y, Yang Q. 39.  et al. 2011. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68 [Google Scholar]
  40. Germar K, Dose M, Konstantinou T, Zhang J, Wang H. 40.  et al. 2011. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. PNAS 108:20060–65 [Google Scholar]
  41. Rothenberg EV, Champhekar A, Damle S, Del Real MM, Kueh HY. 41.  et al. 2013. Transcriptional establishment of cell-type identity: dynamics and causal mechanisms of T-cell lineage commitment. Cold Spring Harb. Symp. Quant. Biol. 78:31–41 [Google Scholar]
  42. Yang Q, Monticelli LA, Saenz SA, Chi AWS, Sonnenberg GF. 42.  et al. 2013. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:694–704 [Google Scholar]
  43. Mielke LA, Groom JR, Rankin LC, Seillet C, Masson F. 43.  et al. 2013. TCF-1 controls ILC2 and NKp46+RORγt+ innate lymphocyte differentiation and protection in intestinal inflammation. J. Immunol 191:4383–91 [Google Scholar]
  44. Verhoef P, Constantinides M, McDonald B, Urban J, Sperling A, Bendelac A. 44.  2016. Intrinsic functional defects of type 2 innate lymphoid cells impair innate allergic inflammation in promyelocytic leukemia zinc finger (PLZF)-deficient mice. J. Allergy Clin. Immunol. 137591–600.e1
  45. Seiler MP, Mathew R, Liszewski MK, Spooner CJ, Barr K. 45.  et al. 2012. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat. Immunol. 13:264–71 [Google Scholar]
  46. Zhu J, Yamane H, Paul WE. 46.  2010. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28:445–89 [Google Scholar]
  47. Antebi YE, Reich-Zeliger S, Hart Y, Mayo A, Eizenberg I. 47.  et al. 2013. Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLOS Biol. 11:e1001616 [Google Scholar]
  48. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ. 48.  et al. 2006. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126:755–66 [Google Scholar]
  49. Hu M, Krause D, Greaves M, Sharkis S, Dexter M. 49.  et al. 1997. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11:774–85 [Google Scholar]
  50. Miyamoto T, Iwasaki H, Reizis B, Ye M, Graf T. 50.  et al. 2002. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3:137–47 [Google Scholar]
  51. Ng SYM, Yoshida T, Zhang J, Georgopoulos K. 51.  2009. Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 30:493–507 [Google Scholar]
  52. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N. 52.  et al. 2014. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 40:378–88 [Google Scholar]
  53. Klein Wolterink RGJ, Serafini N, van Nimwegen M, Vosshenrich CAJ, de Bruijn MJW. 53.  et al. 2013. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. PNAS 110:10240–45 [Google Scholar]
  54. Serafini N, Klein Wolterink RGJ, Satoh-Takayama N, Xu W, Vosshenrich CAJ. 54.  et al. 2014. Gata3 drives development of RORγt+ group 3 innate lymphoid cells. J. Exp. Med. 211:199–208 [Google Scholar]
  55. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E. 55.  et al. 2012. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13:229–36 [Google Scholar]
  56. Halim TYF, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. 56.  2012. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37:463–74 [Google Scholar]
  57. Walker JA, Oliphant CJ, Englezakis A, Yu Y, Clare S. 57.  et al. 2015. Bcl11b is essential for group 2 innate lymphoid cell development. J. Exp. Med. 212:875–82 [Google Scholar]
  58. Yu Y, Wang C, Clare S, Wang J, Lee SC. 58.  et al. 2015. The transcription factor Bcl11b is specifically expressed in group 2 innate lymphoid cells and is essential for their development. J. Exp. Med. 212:865–74 [Google Scholar]
  59. Califano D, Cho JJ, Uddin MN, Lorentsen KJ, Yang Q. 59.  et al. 2015. Transcription factor Bcl11b controls identity and function of mature type 2 innate lymphoid cells. Immunity 43:354–68 [Google Scholar]
  60. Spooner CJ, Lesch J, Yan D, Khan AA, Abbas A. 60.  et al. 2013. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat. Immunol. 14:1229–36 [Google Scholar]
  61. Zhu J, Jankovic D, Grinberg A, Guo L, Paul WE. 61.  2006. Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion. PNAS 103:18214–19 [Google Scholar]
  62. Zhu J, Davidson TS, Wei G, Jankovic D, Cui K. 62.  et al. 2009. Down-regulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J. Exp. Med. 206:329–41 [Google Scholar]
  63. Ebihara T, Song C, Ryu SH, Plougastel-Douglas B, Yang L. 63.  et al. 2015. The role of Runx3 in lineage specification of innate lymphoid cells. Nat. Immunol. 16:1124–33 [Google Scholar]
  64. Yagi R, Junttila IS, Wei G, Urban JF, Zhao K. 64.  et al. 2010. The transcription factor GATA3 actively represses RUNX3 protein-regulated production of interferon-gamma. Immunity 32:507–17 [Google Scholar]
  65. Constantinides MG, Picard D, Savage AK, Bendelac A. 65.  2011. A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger. J. Immunol. 187:309–15 [Google Scholar]
  66. Savage AK, Constantinides MG, Bendelac A. 66.  2011. Promyelocytic leukemia zinc finger turns on the effector T cell program without requirement for agonist TCR signaling. J. Immunol. 186:5801–6 [Google Scholar]
  67. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M. 67.  et al. 2010. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–70 [Google Scholar]
  68. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD. 68.  et al. 2012. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13:144–51 [Google Scholar]
  69. Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA. 69.  et al. 2013. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat. Immunol. 14:389–95 [Google Scholar]
  70. van de Pavert SA, Ferreira M, Domingues RG, Ribeiro H, Molenaar R. 70.  et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508:123–27 [Google Scholar]
  71. Spencer SP, Wilhelm C, Yang Q, Hall JA, Bouladoux N. 71.  et al. 2014. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343:432–37 [Google Scholar]
  72. Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. 72.  2004. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5:64–73 [Google Scholar]
  73. Satoh-Takayama N, Lesjean-Pottier S, Vieira P, Sawa S, Eberl G. 73.  et al. 2010. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207:273–80 [Google Scholar]
  74. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T. 74.  et al. 2010. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463:540–44 [Google Scholar]
  75. Geiger TL, Abt MC, Gasteiger G, Firth MA, O’Connor MH. 75.  et al. 2014. Nfil3 is crucial for development of innate lymphoid cells and host protection against intestinal pathogens. J. Exp. Med. 211:1723–31 [Google Scholar]
  76. Gascoyne DM, Long E, Veiga Fernandes H, de Boer J, Williams O. 76.  et al. 2009. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat. Immunol. 10:1118–24 [Google Scholar]
  77. Kamizono S, Duncan GS, Seidel MG. 77.  2009. Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J. Exp. Med. 206:2977–86 [Google Scholar]
  78. Male V, Nisoli I, Kostrzewski T, Allan DSJ, Carlyle JR. 78.  et al. 2014. The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J. Exp. Med. 211:635–42 [Google Scholar]
  79. Held W, Clevers H, Grosschedl R. 79.  2003. Redundant functions of TCF-1 and LEF-1 during T and NK cell development, but unique role of TCF-1 for Ly49 NK cell receptor acquisition. Eur. J. Immunol. 33:1393–98 [Google Scholar]
/content/journals/10.1146/annurev-immunol-041015-055549
Loading
/content/journals/10.1146/annurev-immunol-041015-055549
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error