Skip to main content
Log in

Myocardial subcellular glycogen distribution and sarcoplasmic reticulum Ca2+ handling: effects of ischaemia, reperfusion and ischaemic preconditioning

  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Ischaemic preconditioning (IPC) protects against myocardial ischaemia–reperfusion injury. The metabolic and ionic effects of IPC remain to be clarified in detail. We aimed to investigate the effect of IPC (2 times 5 min ischaemia) on the subcellular distribution of glycogen and Ca2+-uptake and leakiness by the sarcoplasmic reticulum (SR) in response to ischaemia–reperfusion in cardiomyocytes of isolated perfused rat hearts (Wistar rats, 335 ± 25 g). As estimated by quantitative transmission electron microscopy, the pre-ischaemic contribution [%, mean (95% CI)] of three sub-fractions of glycogen relative to total glycogen was 50 (39:61) as subsarcolemmal, 41 (31:50) as intermyofibrillar, and 9 (5:13) as intramyofibrillar glycogen. After 25 min of ischaemia, the relative contribution (%) of subsarcolemmal glycogen decreased to 39 (32:47) in control hearts (Con) and to 38 (31:45) in IPC. After 15 min reperfusion the contribution of subsarcolemmal glycogen was restored to pre-ischaemic levels in IPC hearts, but not in Con hearts. IPC increased the left ventricular developed pressure following ischaemia–reperfusion compared with Con. In saponin-skinned cardiomyocyte bundles, ischaemia reduced the SR Ca2+-uptake rate, with no effect of IPC. However, IPC reduced a SR Ca2+-leakage at pre-ischaemia, after ischaemia and during reperfusion. In conclusion, subsarcolemmal glycogen was preferentially utilised during sustained myocardial ischaemia. IPC improved left ventricular function reflecting reduced ischaemia–reperfusion injury, mediated a re-distribution of glycogen towards a preferential storage within the subsarcolemmal space during reperfusion, and lowered SR Ca2+-leakage. Under the present conditions, we found no temporal associations between alterations in glycogen localisation and SR Ca2+ kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angelakos ET, Bernardini P, Barrett WC Jr (1964) Myocardial fibre size and capillary-fibre ratio in the rigth and left ventricles of the rat. Anat Rec 149:671–676

    Article  CAS  PubMed  Google Scholar 

  • Barbosa V, Sievers RE, Zaugg CE, Wolfe CL (1996) Preconditioning ischemia time determines the degree of glycogen depletion and infarct size reduction in rat hearts. Am Heart J 131:224–230

    Article  CAS  PubMed  Google Scholar 

  • Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  CAS  PubMed  Google Scholar 

  • Boehm E, Ventura-Clapier R, Mateo P, Lechène P, Veksler V (2000) Glycolysis supports calcium uptake by the sarcoplasmic reticulum in skinned ventricular fibres of mice deficient in mitochondrial and cytosolic creatine kinase. J Mol Cell Cardiol 32:891–902

    Article  CAS  PubMed  Google Scholar 

  • Bradamante S, Marchesani A, Barenghi L, Paracchini L, de Jonge R, de Jong JW (2000) Glycogen turnover and anaplerosis in preconditioned rat hearts. Biochem Biophys Acta 1502:363–379

    CAS  PubMed  Google Scholar 

  • Cannell MB, Cheng H, Lederer WJ (1995) The control of calcium release in heart muscle. Science 268:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Caulfield J, Klionsky B (1959) Myocardial ischaemia and early infarction: an electron microscopic study. Amer J Path 35:489–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer MR, Lederer WJ, Cannell MB (1996) Calcium sparks and Ca2+I waves in cardiac myocytes. Am J Physiol Cell 270:C148–C159

    Article  CAS  Google Scholar 

  • De Bruijn WC (1973) Glycogen, its chemistry and morphologic appearance in the electron microscope. I. A modified OsO 4 fixative which selectively contrasts glycogen. J Ultrastruct Res 42:29–50

    Article  PubMed  Google Scholar 

  • Dekker LR, Fiolet JW, Van Bavel E, Coronel R, Opthof T, Spaan JA, Janse MJ (1996) Intracellular Ca2+, intracellular electrical coupling, and mechanical activity in ischaemic rabbit papillary muscle. Effects of preconditioning and metabolic blockade. Circ Res 79:237–246

    Article  CAS  PubMed  Google Scholar 

  • Depre C, Hue L (1997) Inhibition of glycogenolysis by glucose analogue in the working rat heart. J Mol Cell Cardiol 29:2253–2259

    Article  CAS  PubMed  Google Scholar 

  • Depre C, Vanoverschelde J-LJ, Taegtmeyer H (1999) Glucose for the heart. Circulation 99:578–588

    Article  CAS  PubMed  Google Scholar 

  • Doenst T, Guthrie PH, Taegtmeyer H (1998) Ischemic preconditioning in rat heart: no correlation between glycogen content and return of function. Mol Cell Biochem 180:153–161

    Article  CAS  PubMed  Google Scholar 

  • Ferrans VJ, Hibbs RG, Black WC, Weilbaecher DG (1964) Isoproterenol-induced myocardial necrosis. A histochemical and elctron microscopic study. Am Heart J 68:71–90

    Article  CAS  PubMed  Google Scholar 

  • Ferrans VJ, Hibbs RG, Walsh JJ, Burch GE (1969) Histochemical and electron microscopical studies on the cardiac necroses produced by sympathomimetic agents. Ann NY Acad Sci 156:309–332

    Article  CAS  PubMed  Google Scholar 

  • Fraser H, Lopaschuk GD, Clanachan AS (1998) Assessment of glycogen turnover in aerobic, ischemic, and reperfused working rat hearts. Am J Physiol Heart Circ Physiol 44:H1533–H1541

    Article  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180

    Article  CAS  PubMed  Google Scholar 

  • Gejl KD, Ørtenblad N, Andersson E, Plomgaard P, Holmberg H-C, Nielsen J (2017) Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol 595:2809–2821

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Hultman E, Nordesjö LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33:109–120

    Article  CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13:193–209

    Article  CAS  PubMed  Google Scholar 

  • Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, Carey AL, Kammoun HL, Delbridge LM, Reddy M, Chen Y-C, Du X-J, Hagemeyer CE, Febbrario MA, Siebel AL, Kingwell BA (2017) High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med 9:100. https://doi.org/10.1126/scitranslmed.aam6084

    Article  CAS  Google Scholar 

  • Hohl CM, Garleb AA, Altschuld RA (1992) Effects of simulated ischaemia and reperfusion on the sarcoplasmic reticulum of digitonin-lysed cardiomyocytes. Circ Res 70:716–723

    Article  CAS  PubMed  Google Scholar 

  • Inesi G, de Meis L (1989) Regulation of steady state filling in sarcoplasmic reticulum. J Biol Chem 264:5929–5936

    Article  CAS  PubMed  Google Scholar 

  • Nielsen JS, Sahlin K, Ørtenblad N (2007a) Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions. Acta Physiol 191:217–228

    Article  CAS  Google Scholar 

  • Jeremy RW, Koretsune Y, Marban E, Becker LC (1992) Relation between glycolysis and calcium homeostasis in postischaemic myocardium. Circ Res 70:1180–1190

    Article  CAS  PubMed  Google Scholar 

  • Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W (1992) Effetc of ischaemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res 71:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • King LM, Opie LH (1996) Does preconditioning act by glycogen depletion in the isolated rat heart? J Mol Cell Cardiol 28:2305–2321

    Article  CAS  PubMed  Google Scholar 

  • Krause S, Hess ML (1984) Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischaemia. Circ Res 55:176–184

    Article  CAS  PubMed  Google Scholar 

  • Lamboley CR, Wyckelsma VL, McKenna MJ, Murphy RM, Lamb GD (2016) Ca2+ leakage out of the sarcoplasmic reticulum is increased in type I skeletal muscle fibres in aged humans. J Physiol 594:469–481

    Article  CAS  PubMed  Google Scholar 

  • Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Passonneau JV (1972) A flexible system on enzymatic analysis. Academic Press, New York

    Google Scholar 

  • Luciani GB, D’Agnolo A, Mazzucco A, Gallucci V, Salviati G (1993) Effects of ischaemia on sarcoplasmic reticulum and contractile myofilament activity in human myocardium. Am J Physiol 265:H1334–H1341

    CAS  PubMed  Google Scholar 

  • Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, Graham TE (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93:1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE (2007) Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol 580:617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen JS, Sahlin K, Ørtenblad N (2007b) Reduced sarcoplasmic reticulum content of releasable Ca2+ in rat soleus muscle fibres after eccentric contractions. Acta Physiol 191:217–228

    Article  CAS  Google Scholar 

  • Nielsen J, Holmberg H-C, Schrøder HD, Saltin B, Ørtenblad N (2011) Human skeletal muscle glycogen utilisation in exhaustive exercise: role of subcellular localisation and fibre type. J Physiol 589:2871–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orchard C, Brette F (2008) T-tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes. Cardiovasc Res 77:237–244

    Article  CAS  PubMed  Google Scholar 

  • Povlsen JA, Løfgren B, Dalgas C, Jespersen NR, Johnsen J, Bøtker HE (2014) Frequent biomarker analysis in the isolated perfused heart reveals two distinct phases of reperfusion injury. Int J Cardiol 171:9–14

    Article  PubMed  Google Scholar 

  • Rolfe DFS, Brown GC (1997) Cellular energy utilisation and molecular origin of standard metabolic rate in mammals. Physiol Rev 77:731–758

    Article  CAS  PubMed  Google Scholar 

  • Sankaranarayanan R, Kistamas K, Greensmith DJ, Venetucci LA, Eisner DA (2017) Systolic [Ca2+]i regulates diastolic levels in rat ventricular myocytes. J Physiol 595:5545–5555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh H, Blatter LA, Bers DM (1997) Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol Heart Circ Physiol 272:H657–668

    Article  CAS  Google Scholar 

  • Smith GB, Stefenelli T, Wu ST, Wikman-Coffelt J, Parmley WW, Zaugg CE (1996) Rapid adaption of myocardial calcium homeostasis to short episodes of ischaemia in isolated rat hearts. Am Heart J 131:1106–1112

    Article  CAS  PubMed  Google Scholar 

  • Spencer TN, Botting KJ, Morrison JL, Posterino GS (2006) Contractile and Ca2+-handling properties of the right ventricular papillary muscle in the late-gestation sheep fetus. J Appl Pysiol 101:728–733

    Article  CAS  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  • Steenbergen C, Murphy E, Watts JA, London RE (1990) Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischaemic injury inperfused rat heart. Circ Res 66:135–146

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DG, Wendt IR (1986) Effects of procaine on calcium accumulation by the sarcoplasmic reticulum of mechanically disrupted rat cardiac muscle. J Physiol 373:195–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern MD, Rios E, Maltsev VA (2013) Life and death of a cardiac calcium spark. J Gen Physiol 142:257–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Støttrup NB, Løfgren B, Birkler RD, Nielsen JM, Wang L, Caldarone CA, Kristiansen SB, Contractor H, Johannsen M, Bøtker HE, Nielsen TT (2010) Inhibition of the malate-aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovas Res 88:257–266

    Article  CAS  Google Scholar 

  • Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischaemic rat hearts. Possible involvement of H+-Na+ and Na+ and Ca2+ exchange. Circ Res 65:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Todd GL, Pieper GM, Clayton FC, Eliot RS (1979) Heterogeneity in distribution of cardiac glycogen following isoproterenol infusion in the dog. Histochem J 11:425–434

    Article  CAS  PubMed  Google Scholar 

  • Valverde CA, Kornyeyev D, Ferreire M, Petrosky AD, Mattiazzi A, Escobar AL (2010) Transient Ca2+ depletion of the sarcoplasmic reticulum at the onset of reperfusion. Cardiovasc Res 85:671–680

    Article  CAS  PubMed  Google Scholar 

  • Weibel ER (1980) Stereological methods, vol 2: theoretical foundations. Academic Press, London

  • Zima AV, Kockskämper J, Blatter LA (2006) Cytosolic energy reserves determine the effect of glycolytic sugar phosphates on sarcoplasmic reticulum Ca2+ release inn cat ventricular myocytes. J Physiol 577:281–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucchi R, Ronca-Testoni S, Di Napoli P, Yu G, Gallina S, Bosco G, Ronca G, Calafiore AM, Mariani M, Barsotti A (1996) Sarcoplasmic reticulum calcium uptake in human myocardium subjected to ischaemia and reperfusion during cardiac surgery. J Mol Cell Cardiol 28:1693–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Karin Trampedach, Susan Bøgebjerg, and Sandra Holm Riggelsen for technical assistance.

Funding

This work was supported by the Danish Council for Independent Research [DFF – 1333-00,144 to J.N.], the Danish Heart Association [72981 to J.N], the Lundbeck Foundation [R108-A10616 to J.N.], and The Danish Council for Strategic Research (11-1115818 to H.E.B.].

Author information

Authors and Affiliations

Authors

Contributions

The experiments were performed in the laboratory of the Department of Cardiology, Aarhus University Hospital. The TEM was performed at the Department of Pathology, Odense University Hospital, Denmark. The TEM image analyses were performed at the Department of Sports Science and Clinical Biomechanics, University of Southern Denmark. JN, JJ, NØ and HEB were involved in the design of this study. All authors were involved in acquisition, analysis or interpretation of data for the work. JN drafted the work and all authors revised it critically for important intellectual content. All authors approved the final, submitted version of the manuscript. All authors agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All persons designated as authors qualify for authorship, and all those who qualify for authorship are listed.

Corresponding author

Correspondence to Joachim Nielsen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, J., Johnsen, J., Pryds, K. et al. Myocardial subcellular glycogen distribution and sarcoplasmic reticulum Ca2+ handling: effects of ischaemia, reperfusion and ischaemic preconditioning. J Muscle Res Cell Motil 42, 17–31 (2021). https://doi.org/10.1007/s10974-019-09557-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-019-09557-3

Keywords

Navigation