Skip to main content
Log in

Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The present study highlights the apoptotic activity of magnetic Fe3O4 nanoparticulates functionalized by glutamic acid and 2-pyridinecarboxaldehyde thiosemicarbazone (PTSC) toward human lung epithelial carcinoma A549 cell line. To this aim, the Fe3O4 nanoparticulates were prepared using co-precipitation method. Then, the glutamic acid and Fe3O4 nanoparticulates were conjugated to each other. The product was further functionalized with bio-reactive PTSC moiety. In addition, the synthesized Fe3O4@Glu/PTSC nanoparticulates were characterized by physico-chemical techniques including scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier-transform infrared (FT–IR) spectroscopy and zeta potential analysis. The effects of in vitro cell viability in Fe3O4@Glu/PTSC nanoparticulate indicated the anti-proliferative properties in a dose-dependent manner (IC50 = 135.6 µM/mL). The high selectivity for tumor cells and far below of activity in HEK293 non-tumorigenic cells is considered as an important feature for this complex (SI, 3.48). Based on the results, PTSC failed to reveal any activity against A549 cells alone. However, Fe3O4 nanoparticulates had some effects in inhibiting the growth of lung cancer cell. Furthermore, Bax and Bcl-2 gene expressions were quantified by real-time PCR method. The expression of Bax increased 1.62-fold, while the expression of Bcl-2 decreased 0.76-fold at 135.6 µM/mL concentration of Fe3O4@Glu/PTSC compared to untreated A549 cells. Furthermore, the Fe3O4@Glu/PTSC nanoparticulate-inducing apoptosis properties were evaluated by Hoechst 33258 staining, Caspase-3 activation assay and Annexin V/propidium iodide staining. The results of the present study suggest that Fe3O4@Glu/PTSC nanoparticulates exhibit effective anti-cancer activity against lung cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Prabhu VV, Elangovan P, Devaraj SN, Sakthivel KM (2018) Gene 679:352–359

    Article  CAS  Google Scholar 

  2. Sever B, Akalin Çiftci G, Özdemir A, Altintop MD (2019) J Res Pharm 23:16–24

    CAS  Google Scholar 

  3. Ganim MA, Baloglu MC, Aygun A, Altunoglu YC, Sayiner HS, Kandemirli F, Sen F (2018) Int J Biol Macromol 122:1271–1278

    Article  PubMed  CAS  Google Scholar 

  4. Altıntop MD, Atlı Ö, Ilgın S, Demirel R, Özdemir A, Kaplancıklı ZA (2016) Eur J Med Chem 108:406–414

    Article  PubMed  CAS  Google Scholar 

  5. Da Silva Mesquita R, Tadei WP, Bastos AMB (2018) Brazil J Entomol Nematol 10:37–42

    Article  Google Scholar 

  6. Liu B, Sun R, Luo H, Liu X, Jiang M, Yuan C, Yang L, Hu J (2017) Immunobiology 222(2):198–205

    Article  CAS  PubMed  Google Scholar 

  7. Zheng JH, Follis AV, Kriwacki RW, Moldoveanu T (2016) FEBS J 283(14):2690–2700

    Article  CAS  PubMed  Google Scholar 

  8. Schirrmacher V (2019) FEBS J 283:2690–2700

    Google Scholar 

  9. Li-Weber M (2009) Cancer Treat Rev 35(1):57–68

    Article  CAS  PubMed  Google Scholar 

  10. Akladios FN, Andrew SD, Parkinson CJ (2016) JBIC J Biol Inorg Chem 21(8):931–944

    Article  CAS  PubMed  Google Scholar 

  11. Pelosi G (2010) Open Crystallogr J 3:16–28

    Article  CAS  Google Scholar 

  12. Gou Y, Wang J, Chen S, Zhang Z, Zhang Y, Zhang W, Yang F (2016) Eur J Med Chem 123:354–364

    Article  CAS  PubMed  Google Scholar 

  13. Jansson PJ, Sharpe PC, Bernhardt PV, Richardson DR (2010) J Med Chem 53(15):5759–5769

    Article  CAS  PubMed  Google Scholar 

  14. El Metwally NM, Arafa R, El-Ayaan U (2014) Therm Anal Calorim 115(3):2357–2367

    Article  CAS  Google Scholar 

  15. Babu KR, Muckenthaler MU (2016) J Mol Med 94(3):347–359

    Article  CAS  PubMed  Google Scholar 

  16. Whitnall M, Howard J, Ponka P, Richardson DR (2006) Proc Natl Acad Sci 103(40):14901–14906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu Y, Li J, Xu K, Gu J, Huang L, Zhang L, Liu N, Kong J, Xing M, Zhang L (2018) Toxicol Lett 292:151–161

    Article  CAS  PubMed  Google Scholar 

  18. Wang J, Sui M, Fan W (2010) Curr Drug Metab 11(2):129–141

    Article  CAS  PubMed  Google Scholar 

  19. Lisic EC, Rand VG, Ngo L, Kent P, Rice J, Gerlach D, Papish ET, Jiang X (2018) Open J Med Chem 8(2):30

    Article  CAS  Google Scholar 

  20. Prakash Kinthada M, Gust R (2018) Int J Drug Des Dev 1(1):1001

    Google Scholar 

  21. Akam EA, Tomat E (2016) Bioconjug Chem 27(8):1807–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kovacevic Z, Chikhani S, Lovejoy DB, Richardson DR (2011) Mol Pharmacol 80:598–609

    Article  CAS  PubMed  Google Scholar 

  23. Zhang H, Thomas R, Oupicky D, Peng F (2008) J Biol Inorg Chem 13(1):47–55

    Article  CAS  PubMed  Google Scholar 

  24. Yazdani F, Seddigh M (2016) Mater Chem Phys 184:318–323

    Article  CAS  Google Scholar 

  25. Cree IA (2011) Cancer cell culture: methods and protocols. Springer, Berlin

    Book  Google Scholar 

  26. Kirschner KM, Wagner N, Wagner K-D, Wellmann S, Scholz H (2006) J Biol Chem 281(42):31930–31939

    Article  CAS  PubMed  Google Scholar 

  27. Zhang B, Luo H, Xu Q, Lin L, Zhang B (2017) Oncotarget 8(8):13620

    PubMed  PubMed Central  Google Scholar 

  28. Convertini P, Tramutola F, Iacobazzi V, Lupattelli P, Chiummiento L, Infantino V (2015) Chem Biol Interact 237:1–8

    Article  CAS  PubMed  Google Scholar 

  29. Peña-Morán O, Villarreal M, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V (2016) Molecules 21(8):1013

    Article  PubMed Central  CAS  Google Scholar 

  30. Cabrera M, Gomez N, Lenicov FR, Echeverría E, Shayo C, Moglioni A, Fernández N, Davio C (2015) PLoS One 10(9):e0136878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Suliman YAO, Ali D, Alarifi S, Harrath AH, Mansour L, Alwasel SH (2015) Environ Toxicol 30(2):149–160

    Article  CAS  Google Scholar 

  32. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Nature 547(7661):99

    Article  CAS  PubMed  Google Scholar 

  33. Zhao Y, Guo C, Wang L, Wang S, Li X, Jiang B, Wu N, Guo S, Zhang R, Liu K (2017) Biochem Biophys Res Commun 491(1):65–71

    Article  CAS  PubMed  Google Scholar 

  34. Pearce MC, Gamble JT, Kopparapu PR, O’Donnell EF, Mueller MJ, Jang HS, Greenwood JA, Satterthwait AC, Tanguay RL, Zhang X-K (2018) Oncotarget 9(40):26072

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen B, Liang Y, Wu W, Cheng J, Xia G, Gao F, Ding J, Gao C, Shao Z, Li G (2009) Int J Nanomed 4:251

    Article  CAS  Google Scholar 

  36. Eimani BG, Sanati MH, Houshmand M, Ataei M, Akbarian F, Shakhssalim N (2014) Cell J (Yakhteh) 15(4):356

    CAS  Google Scholar 

  37. Lopez JA, González F, Bonilla FA, Zambrano G, Gómez ME (2010) Revista Latinoamericana de Metalurgia y Materiales 30(1):60–66

    Google Scholar 

  38. Tadjarodi A, Ferdowsi SM, Zare-Dorabei R, Barzin A (2016) Ultrason Sonochem 33:118–128

    Article  CAS  PubMed  Google Scholar 

  39. Bamgboye TT, Bamgboye OA (1985) Inorg Chim Acta 105(3):223–226

    Article  CAS  Google Scholar 

  40. Shandiz SAS, Montazeri A, Abdolhosseini M, Shahrestani SH, Hedayati M, Moradi-Shoeili Z, Salehzadeh A (2018) J Cluster Sci 29(6):1107–1114

    Article  CAS  Google Scholar 

  41. Zargoosh K, Zilouei H, Mohammadi MR, Abedini H (2014) CLEAN Soil Air Water 42(9):1208–1215

    Article  CAS  Google Scholar 

  42. El-Boubbou K (2018) Nanomedicine 13(8):929–952

    Article  CAS  PubMed  Google Scholar 

  43. Joseph E, Singhvi G (2019) Nanomaterials for Drug Delivery and Therapy 1:91–116

    Article  Google Scholar 

  44. Liang W, Li X, Li Y, Li C, Gao B, Gan H, Li S, Shen J, Kang J, Ding S (2014) Int J Oncol 44(1):91–98

    Article  CAS  PubMed  Google Scholar 

  45. Lovejoy DB, Sharp DM, Seebacher N, Obeidy P, Prichard T, Stefani C, Basha MT, Sharpe PC, Jansson PJ, Kalinowski DS (2012) J Med Chem 55(16):7230–7244

    Article  CAS  PubMed  Google Scholar 

  46. Kalaivani P, Saranya S, Poornima P, Prabhakaran R, Dallemer F, Padma VV, Natarajan K (2014) Eur J Med Chem 82:584–599

    Article  CAS  PubMed  Google Scholar 

  47. Qi J, Zheng Y, Qian K, Tian L, Zhang GX, Cheng Z, Wang Y (2017) J Inorg Biochem 177:110–117

    Article  CAS  PubMed  Google Scholar 

  48. Prabhakaran R, Kalaivani P, Poornima P, Dallemer F, Huang R, Vijaya Padma V, Natarajan K (2013) Bioorg Med Chem 21(21):6742–6752

    Article  CAS  PubMed  Google Scholar 

  49. de Oliveira PF, Alves JM, Damasceno JL, Oliveira RAM, Dias Júnior H, Crotti AEM, Tavares DC (2015) Revista Brasileira de Farmacognosia 25(2):183–188

    Article  CAS  Google Scholar 

  50. Matesanz AI, Jimenez-Faraco E, Ruiz MC, Balsa LM, Navarro-Ranninger C, León IE, Quiroga AG (2018) Inorg Chem Front 5(1):73–83

    Article  CAS  Google Scholar 

  51. Hall MD, Brimacombe KR, Varonka MS, Pluchino KM, Monda JK, Li J, Walsh MJ, Boxer MB, Warren TH, Fales HM (2011) J Med Chem 54(16):5878–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang G, Ding L, Renegar R, Wang X, Lu Q, Huo S, Chen YH (2011) Cancer Sci 102(6):1216–1222

    Article  CAS  PubMed  Google Scholar 

  53. Wu L, Zhang F, Wei Z, Li X, Zhao H, Lv H, Ge R, Ma H, Zhang H, Yang B (2018) Biomater Sci 6(10):2714–2725

    Article  CAS  PubMed  Google Scholar 

  54. Yuan J, Lovejoy DB, Richardson DR (2004) Blood 104(5):1450–1458

    Article  CAS  PubMed  Google Scholar 

  55. Qi J, Deng J, Qian K, Tian L, Li J, He K, Huang X, Cheng Z, Zheng Y, Wang Y (2017) Eur J Med Chem 134:34–42

    Article  CAS  PubMed  Google Scholar 

  56. Deus CM, Santos GL, Loureiro R, Vega-Naredo I, Faneca H, Oliveira PJ (2015) Curr Med Chem 22(20):2438–2457

    Article  CAS  PubMed  Google Scholar 

  57. Elmore S (2007) Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hingorani R, Deng J, Elia J, McIntyre C, Mittar D (2011) BD Biosciences 1–11

  59. Namvar F, Rahman HS, Mohamad R, Baharara J, Mahdavi M, Amini E, Chartrand MS, Yeap SK (2014) Int J Nanomed 9:2479–2488

    Article  Google Scholar 

  60. Delbridge A, Strasser A (2015) Cell Death Differ 22(7):1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grobmyer SR, Moudgil BM (2010) Biomed Eng Online 9:55–56

    Google Scholar 

Download references

Acknowledgements

We express gratefulness to the biology department, Islamic Azad University, Rasht, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ataollah Sadat Shandiz.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest related to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, A., Sadat Shandiz, S.A., salehzadeh, A. et al. Novel pyridinecarboxaldehyde thiosemicarbazone conjugated magnetite nanoparticulates (MNPs) promote apoptosis in human lung cancer A549 cells. J Biol Inorg Chem 25, 13–22 (2020). https://doi.org/10.1007/s00775-019-01728-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01728-4

Keywords

Navigation