Skip to main content
Log in

Soluble Expression of Recombinant Human Cystatin C and Comparison of the Ni Column and Magnetic Bead Purification

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Cystatin C, also known as γ-trace or post-γ-globulin, is a cysteine protease inhibitor from the cystatin superfamily. It is usually used as a marker of the glomerular filtration rate owing to its low molecular weight and constant secretion. The recently available methods for cystatin C preparation have low outputs. Hence, a productive preparation system is urgently required. In this study, a 6 × His-tag coupled with a thrombin cleavage site was fused to the C-terminus of cystatin C, and the protein was well expressed in Escherichia coli after optimization. Then, two different systems were used to obtain no-tag cystatin C: a traditional nickel (Ni)-column system and a subtly Ni magnetic bead system. The column system was more commonly used, and the magnetic bead system was more convenient. Cystatin C (purity > 97%) was successfully obtained, and the yields in both the systems were higher than those in previous studies. Further, the proper folding status and bioactivity of recombinant cystatin C were confirmed using the papain inhibition assay, dynamic light scattering, and circular dichroism spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CD:

Circular dichroism

DLS:

Dynamic light scattering

GFR:

Glomerular filtration rate

LB:

Lysogeny broth

iPCR:

Inverse polymerase chain reaction

IPTG:

Isopropyl-β-d-thiogalactoside

Magbeads:

Magnetic beads

MBP:

Maltose-binding protein

PBS:

Phosphate-buffered saline

References

  1. Ekiel I, Abrahamson M, Fulton DB, Lindahl P, Storer AC, Levadoux W, Lafrance M, Labelle S, Pomerleau Y, Groleau D (1997) NMR structural studies of human cystatin C dimers and monomers. J Mol Biol 271(2):266–277

    Article  CAS  PubMed  Google Scholar 

  2. Wilson ME, Boumaza I, Bowser R (2013) Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 10(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Irani DN, Anderson C, Gundry R, Cotter R, Moore S, Kerr DA, McArthur JC, Sacktor N, Pardo CA, Jones M, Calabresi PA, Nath A (2006) Cleavage of cystatin C in the cerebrospinal fluid of patients with multiple sclerosis. Ann Neurol 59(2):237–247. https://doi.org/10.1002/ana.20786

    Article  CAS  PubMed  Google Scholar 

  4. Wang XF, Liu DX, Liang Y, Xing LL, Zhao WH, Qin XX, Shang DS, Li B, Fang WG, Cao L, Zhao WD, Chen YH (2016) Cystatin C shifts APP processing from amyloid-beta production towards non-amyloidgenic pathway in brain endothelial cells. PLoS ONE 11(8):e0161093. https://doi.org/10.1371/journal.pone.0161093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, Devidze N, Wang X, Grubb A, Gan L (2008) Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron 60(2):247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manocha A, Gupta F, Jain R, Bhargava S, Kankra M, Das S, Srivastava LM (2014) The potential of cystatin C and small dense LDL as biomarkers of coronary artery disease risk in a young Indian population. Mol Cell Biochem 389(1–2):59–68. https://doi.org/10.1007/s11010-013-1927-9

    Article  CAS  PubMed  Google Scholar 

  7. Sukhova GK, Wang B, Libby P, Pan JH, Zhang Y, Grubb A, Fang K, Chapman HA, Shi GP (2005) Cystatin C deficiency increases elastic lamina degradation and aortic dilatation in apolipoprotein E-null mice. Circ Res 96(3):368–375. https://doi.org/10.1161/01.RES.0000155964.34150.F7

    Article  CAS  PubMed  Google Scholar 

  8. Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, Siscovick DS, Stehmanbreen C (2005) Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 352(20):2049–2060

    Article  CAS  PubMed  Google Scholar 

  9. Kopitz C, Anton M, Gansbacher B, Kruger A (2005) Reduction of experimental human fibrosarcoma lung metastasis in mice by adenovirus-mediated cystatin C overexpression in the host. Cancer Res 65(19):8608–8612. https://doi.org/10.1158/0008-5472.CAN-05-1572

    Article  CAS  PubMed  Google Scholar 

  10. Ervin H, Cox JL (2005) Late stage inhibition of hematogenous melanoma metastasis by cystatin C over-expression. Cancer Cell Int 5(1):14. https://doi.org/10.1186/1475-2867-5-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, Kusek JW, Manzi J, Van Lente F, Zhang YL, Coresh J, Levey AS, Investigators C-E (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367(1):20–29. https://doi.org/10.1056/NEJMoa1114248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mijušković Z, Maksić Đ, Hrvačević R, Vučelić M, Subota V, Stojanović J, Pejović J (2007) Urinary cystatin C as a marker of tubular dysfunction. J Med Biochem 26(2):98–102. https://doi.org/10.2478/v10011-007-0013-9

    Article  CAS  Google Scholar 

  13. Shlipak MG, Mattes MD, Peralta CA (2013) Update on cystatin C: incorporation into clinical practice. Am J Kidney Dis 62(3):595–603. https://doi.org/10.1053/j.ajkd.2013.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi M, Iwamoto S, Sato S, Sudo S, Takagi M, Sakai H, Hayakawa T (2013) Efficient production of recombinant cystatin C using a peptide-tag, 4AaCter, that facilitates formation of insoluble protein inclusion bodies in Escherichia coli. Protein Expr Purif 88(2):230–234. https://doi.org/10.1016/j.pep.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Q, Zhao X, Xu X, Tang B, Zha Z, Zhang M, Yao D, Chen X, Wu X, Cao L, Guo H (2014) Expression and purification of soluble human cystatin C in Escherichia coli with maltose-binding protein as a soluble partner. Protein Expr Purif 104:14–19. https://doi.org/10.1016/j.pep.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  16. Perlenfein TJ, Murphy RM (2016) Expression, purification, and characterization of human cystatin C monomers and oligomers. Protein Expr Purif 117:35–43. https://doi.org/10.1016/j.pep.2015.09.023

    Article  CAS  PubMed  Google Scholar 

  17. Zhou Y, Zhou Y, Li J, Chen J, Yao Y, Yu L, Peng D, Wang M, Su D, He Y, Gou L (2015) Efficient expression, purification and characterization of native human cystatin C in Escherichia coli periplasm. Protein Expr Purif 111:18–22. https://doi.org/10.1016/j.pep.2015.03.006

    Article  CAS  PubMed  Google Scholar 

  18. Chen T, Xu W (2017) A purification method for tag-free human cystatin C recombinant protein expressed in Escherichia coli. Prep Biochem Biotechnol 47(2):123–128. https://doi.org/10.1080/10826068.2016.1181087

    Article  CAS  PubMed  Google Scholar 

  19. Kolodziejczyk R, Michalska K, Hernandez-Santoyo A, Wahlbom M, Grubb A, Jaskolski M (2010) Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J 277(7):1726–1737. https://doi.org/10.1111/j.1742-4658.2010.07596.x

    Article  CAS  PubMed  Google Scholar 

  20. Abrahamson M, Wikström M, Potempa J, Renvert S, Hall A (1997) Modification of cystatin C activity by bacterial proteinases and neutrophil elastase in periodontitis. Mol Pathol 50(6):291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chauhan S, Tomar RS (2016) Efficient expression and purification of biologically active human cystatin proteins. Protein Expr Purif 118:10–17. https://doi.org/10.1016/j.pep.2015.10.005

    Article  CAS  PubMed  Google Scholar 

  22. Janowski R, Kozak M, Jankowska E, Grzonka Z, Grubb A, Abrahamson M, Jaskolski M (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8(4):316–320. https://doi.org/10.1038/86188

    Article  CAS  PubMed  Google Scholar 

  23. Deng A, Boxer SG (2018) Structural insight into the photochemistry of split green fluorescent proteins: a unique role for a His-Tag. J Am Chem Soc 140(1):375–381. https://doi.org/10.1021/jacs.7b10680

    Article  CAS  PubMed  Google Scholar 

  24. Orlikowska M, Jankowska E, Kolodziejczyk R, Jaskolski M, Szymanska A (2011) Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C. J Struct Biol 173(2):406–413. https://doi.org/10.1016/j.jsb.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  25. Szymańska A, Jankowska E, Orlikowska M, Behrendt I, Czaplewska P, Rodziewiczmotowidło S (2012) Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci 5(4):82

    PubMed  PubMed Central  Google Scholar 

  26. Szymanska A, Radulska A, Czaplewska P, Grubb A, Grzonka Z, Rodziewicz-Motowidło S (2009) Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochim Pol 56(3):455

    Article  CAS  PubMed  Google Scholar 

  27. Ostner G, Lindstrom V, Hjort Christensen P, Kozak M, Abrahamson M, Grubb A (2013) Stabilization, characterization, and selective removal of cystatin C amyloid oligomers. J Biol Chem 288(23):16438–16450. https://doi.org/10.1074/jbc.M113.469593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Behrendt I, Pradzinska M, Spodzieja M, Kolodziejczyk AS, Rodziewicz-Motowidlo S, Szymanska A, Czaplewska P (2016) Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties. Amino Acids 48(7):1717–1729. https://doi.org/10.1007/s00726-016-2242-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 21375039), the Shanghai Committee of Science and Technology (Grant Nos. 16142202000 and 18142202600), the Research Program of Shanghai Chemical Reagent Research Institute Co., Ltd. (Grant F100-81707), and the National Special Fund for State Key Laboratory of Bioreactor Engineering (Grant No. 2060204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuni Cao.

Ethics declarations

Conflict of interest

The author declares no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, J., He, S. et al. Soluble Expression of Recombinant Human Cystatin C and Comparison of the Ni Column and Magnetic Bead Purification. Protein J 39, 85–95 (2020). https://doi.org/10.1007/s10930-019-09873-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09873-0

Keywords

Navigation