Skip to main content
Log in

Inhibition of vascular smooth muscle cell calcification by ATP analogues

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Arterial medial calcification (AMC) has been associated with phenotypic changes in vascular smooth muscle cells (VSMCs) that reportedly makes them more osteoblast-like. Previous work has shown that ATP/UTP can inhibit AMC directly via P2 receptors and indirectly by NPP1-mediated hydrolysis to produce the mineralisation inhibitor, pyrophosphate (PPi). This study investigated the role of P2X receptors in the inhibitory effects of extracellular nucleotides on VSMC calcification. We found that Bz-ATP, α,β-meATP and β,γ-meATP inhibited calcification by up to 100%. Culture in a high-phosphate medium (2 mM) was associated with increased VSMC death and apoptosis; treatment with Bz-ATP, α,β-meATP and β,γ-meATP reduced apoptosis to levels seen in non-calcifying cells. Calcification was also associated with alterations in the protein levels of VSMC (e.g. SM22α and SMA) and osteoblast-associated (e.g. Runx2 and osteopontin) markers; Bz-ATP, α,β-meATP and β,γ-meATP attenuated these changes in protein expression. Long-term culture with Bz-ATP, α,β-meATP and β,γ-meATP resulted in lower extracellular ATP levels and an increased rate of ATP breakdown. P2X receptor antagonists failed to prevent the inhibitory effects of these analogues suggesting that they act via P2X receptor-independent mechanisms. In agreement, the breakdown products of α,β-meATP and β,γ-meATP (α,β-meADP and methylene diphosphonate, respectively) also dose-dependently inhibited VSMC calcification. Furthermore, the actions of Bz-ATP, α,β-meATP and β,γ-meATP were unchanged in VSMCs isolated from NPP1-knockout mice, suggesting that the functional effects of these compounds do not involve NPP1-mediated generation of PPi. Together, these results indicate that the inhibitory effects of ATP analogues on VSMC calcification and apoptosis in vitro may be mediated, at least in part, by mechanisms that are independent of purinergic signalling and PPi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu D, Mackenzie NC, Farquharson C, Macrae VE (2012) Mechanisms and clinical consequences of vascular calcification. Front Endocrinol (Lausanne) 3:95

    Article  Google Scholar 

  2. Proudfoot D, Skepper JN, Hegyi L, Bennett MR, Shanahan CM et al (2000) Apoptosis regulates human vascular calcification in vitro: evidence for initiation of vascular calcification by apoptotic bodies. Circ Res 87:1055–1062

    Article  CAS  PubMed  Google Scholar 

  3. Narisawa S, Harmey D, Yadav MC, O’Neill WC, Hoylaerts MF et al (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 22:1700–1710

    Article  CAS  PubMed  Google Scholar 

  4. Zhu D, Mackenzie NC, Millan JL, Farquharson C, Macrae VE (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 6:e19595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shroff RC, Shanahan CM (2007) The vascular biology of calcification. Semin Dial 20:103–109

    Article  PubMed  Google Scholar 

  6. Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millan JL et al (2018) Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: the same functional effect mediated by different cellular mechanisms. J Cell Physiol 233:3230–3243

    Article  CAS  PubMed  Google Scholar 

  7. Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT et al (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109:e1–e12

    Article  CAS  PubMed  Google Scholar 

  8. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  9. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol 16:433–440

    Article  CAS  PubMed  Google Scholar 

  10. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    Article  CAS  Google Scholar 

  11. North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  CAS  PubMed  Google Scholar 

  12. Burnstock G, Ralevic V (2014) Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    Article  CAS  PubMed  Google Scholar 

  13. Fish RS, Klootwijk E, Tam FW, Kleta R, Wheeler DC et al (2013) ATP and arterial calcification. Eur J Clin Investig 43:405–412

    Article  CAS  Google Scholar 

  14. Cote N, El HD, Pepin A, Guauque-Olarte S, Ducharme V et al (2012) ATP acts as a survival signal and prevents the mineralization of aortic valve. J Mol Cell Cardiol 52:1191–1202

    Article  CAS  PubMed  Google Scholar 

  15. Qian S, Regan JN, Shelton MT, Hoggatt A, Mohammad KS et al (2017) The P2Y2 nucleotide receptor is an inhibitor of vascular calcification. Atherosclerosis 257:38–46

    Article  CAS  PubMed  Google Scholar 

  16. Villa-Bellosta R, Sorribas V (2013) Prevention of vascular calcification by polyphosphates and nucleotides-role of ATP. Circ J 77:2145–2151

    Article  CAS  PubMed  Google Scholar 

  17. Prosdocimo DA, Douglas DC, Romani AM, O’Neill WC, Dubyak GR (2009) Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells. Am J Phys Cell Physiol 296:C828–C839

    Article  CAS  Google Scholar 

  18. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95:269–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fleisch H, Bisaz S (1962) Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195:911

    Article  CAS  PubMed  Google Scholar 

  20. Orriss IR, Arnett TR, Russell RG (2016) Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol 28:57–68

    Article  CAS  PubMed  Google Scholar 

  21. Sali A, Favaloro JM, Terkeltaub R, Goding JW (1999) Germline deletion of the nucleoside triphosphate pyrophosphohydrolase (NTPPPH) plasma cell membrane glycoprotein (PC-1) produces abnormal calcification of the periarticular tissues. In: Vanduffe L, Lemmens R (eds) Ecto-ATPases and related ectonucleotides. Shaker Publishing BV, Mastricht, pp 267–282

    Google Scholar 

  22. Orriss IR, Key ML, Brandao-Burch A, Patel JJ, Burnstock G et al (2012) The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: the role of P2X receptors. Bone 51:389–400

    Article  CAS  PubMed  Google Scholar 

  23. Taylor SE, Shah M, Orriss IR (2014) Generation of rodent and human osteoblasts. BoneKey Rep 3:585

    Article  PubMed  PubMed Central  Google Scholar 

  24. Orriss IR, Knight GE, Utting JC, Taylor SE, Burnstock G et al (2009) Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 220:155–162

    Article  CAS  PubMed  Google Scholar 

  25. Joseph SM, Pifer MA, Przybylski RJ, Dubyak GR (2004) Methylene ATP analogs as modulators of extracellular ATP metabolism and accumulation. Br J Pharmacol 142:1002–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Villa-Bellosta R, Wang X, Millan JL, Dubyak GR, O’Neill WC (2011) Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 301:H61–H68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mackenzie NC, Huesa C, Rutsch F, Macrae VE (2012) New insights into NPP1 function: lessons from clinical and animal studies. Bone 51:961–968

    Article  CAS  PubMed  Google Scholar 

  29. Sheen CR, Kuss P, Narisawa S, Yadav MC, Nigro J et al (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30:824–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Orriss IR, Utting JC, Brandao-Burch A, Colston K, Grubb BR et al (2007) Extracellular nucleotides block bone mineralization in vitro: evidence for dual inhibitory mechanisms involving both P2Y2 receptors and pyrophosphate. Endocrinology 148:4208–4216

    Article  CAS  PubMed  Google Scholar 

  31. Kukley M, Stausberg P, Adelmann G, Chessell IP, Dietrich D (2004) Ecto-nucleotidases and nucleoside transporters mediate activation of adenosine receptors on hippocampal mossy fibers by P2X7 receptor agonist 2'-3'-O-(4-benzoylbenzoyl)-ATP. J Neurosci 24:7128–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sugitani H, Wachi H, Murata H, Sato F, Mecham RP et al (2003) Characterization of an in vitro model of calcification in retinal pigmented epithelial cells. J Atheroscler Thromb 10:48–56

    Article  CAS  PubMed  Google Scholar 

  33. Bauer C, le Saux O, Pomozi V, Aherrahrou R, Kriesen R et al (2018) Etidronate prevents dystrophic cardiac calcification by inhibiting macrophage aggregation. Sci Rep 8:5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miyai K, Ariyasu D, Numakura C, Yoneda K, Nakazato H et al (2015) Hypophosphatemic rickets developed after treatment with etidronate disodium in a patient with generalized arterial calcification in infancy. Bone Rep 3:57–60

    Article  PubMed  PubMed Central  Google Scholar 

  35. Orriss IR, Key ML, Colston KW, Arnett TR (2009) Inhibition of osteoblast function in vitro by aminobisphosphonates. J Cell Biochem 106:109–118

    Article  CAS  PubMed  Google Scholar 

  36. Idris AI, Rojas J, Greig IR, van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82:191–201

    Article  CAS  PubMed  Google Scholar 

  37. Jacobson KA, Ivanov AA, de Castro S, Harden TK, Ko H (2009) Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 5:75–89

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful for the funding from the British Heart Foundation (grant number PG/15/13/31296) and the Biotechnology and Biological Sciences Research Council (BBSRC) in the form of Institute Strategic Programme grants (BB/J004316/1 and BB/P013732/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel R. Orriss.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, J.J., Bourne, L.E., Millán, J.L. et al. Inhibition of vascular smooth muscle cell calcification by ATP analogues. Purinergic Signalling 15, 315–326 (2019). https://doi.org/10.1007/s11302-019-09672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09672-3

Keywords

Navigation