1932

Abstract

Insects other than bees (i.e., non-bees) have been acknowledged as important crop pollinators, but our understanding of which crop plants they visit and how effective they are as crop pollinators is limited. To compare visitation and efficiency of crop-pollinating bees and non-bees at a global scale, we review the literature published from 1950 to 2018 concerning the visitors and pollinators of 105 global food crops that are known to benefit from animal pollinators. Of the 105 animal-pollinated crops, a significant proportion are visited by both bee and non-bee taxa ( = 82; 77%), with a total gross domestic product (GDP) value of US$780.8 billion. For crops with a narrower range of visitors, those that favor non-bees ( = 8) have a value of US$1.2 billion, compared to those that favor bees ( = 15), with a value of US$19.0 billion. Limited pollinator efficiency data were available for one or more taxa in only half of the crops ( = 61; 58%). Among the non-bees, some families were recorded visiting a wide range of crops (>12), including six families of flies (Syrphidae, Calliphoridae, Muscidae, Sarcophagidae, Tachinidae, and Bombyliidae), two beetle families (Coccinelidae and Nitidulidae), ants (Formicidae), wasps (Vespidae), and four families of moths and butterflies (Hesperiidae, Lycaenidae, Nymphalidae, and Pieridae). Among the non-bees, taxa within the dipteran families Syrphidae and Calliphoridae were the most common visitors to the most crops, but this may be an artifact of the limited data available. The diversity of species and life histories in these groups of lesser-known pollinators indicates that diet, larval requirements, and other reproductive needs will require alternative habitat management practices to bees.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025055
2020-01-07
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025055.html?itemId=/content/journals/10.1146/annurev-ento-011019-025055&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aak A, Birkemoe T, Leinaas HP 2011. Phenology and life history of the blowfly Calliphora vicina in stockfish production areas. Entomol. Exp. Appl. 139:35–46
    [Google Scholar]
  2. 2. 
    Aubert J, Goeldlin de Tiefenau P 1981. Observations sur les migrations de Syrphides (Dipt.) dans les Alpes de Suisse occidentale. Mitt. Schweiz. Entomol. Ges. Bull. Soc. Entomol. Suisse 54:377–81
    [Google Scholar]
  3. 3. 
    Balzan MV, Bocci G, Moonen A-C 2014. Augmenting flower trait diversity in wildflower strips to optimise the conservation of arthropod functional groups for multiple agroecosystem services. J. Insect Conserv. 18:713–28
    [Google Scholar]
  4. 4. 
    Bartomeus I, Cariveau DP, Harrison T, Winfree R 2018. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127:306–15
    [Google Scholar]
  5. 5. 
    Blanche R, Cunningham SA. 2005. Rain forest provides pollinating beetles for atemoya crops. J. Econ. Entomol. 98:1193–201
    [Google Scholar]
  6. 6. 
    Bohart GE, Nye WP. 1960. Insect pollinators of carrots in Utah Bull. 419, Agric. Exp. Stn., Utah State Univ Logan:
  7. 7. 
    Borges RM, Somanathan H, Kelber A 2016. Patterns and processes in nocturnal and crepuscular pollination services. Q. Rev. Biol. 91:389–418
    [Google Scholar]
  8. 8. 
    Brittain C, Williams N, Kremen C, Klein AM 2013. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280:20122767
    [Google Scholar]
  9. 9. 
    Bukovinszky T, Rikken I, Evers S, Wäckers F, Biesmeijer J et al. 2016. Effects of pollen species composition on the foraging behaviour and offspring performance of the mason bee Osmia bicornis (L.). Basic Appl. Ecol. 18:21–30
    [Google Scholar]
  10. 10. 
    Campbell AJ, Wilby A, Sutton P, Wäckers F 2017. Getting more power from your flowers: multi-functional flower strips enhance pollinators and pest control agents in apple orchards. Insects 8:E101
    [Google Scholar]
  11. 11. 
    Cik Mohd Rizuan ZA, Noor Hisham H, Samsudin A 2013. Role of pollinating weevil (Elaeidobius kamerunicus), seasonal effect and its relation to fruit set in oil palm area of FELDA Sahabat Paper presented at PIPOC 2013 Conf., Kuala Lumpur Malaysia: Nov 19–21
    [Google Scholar]
  12. 12. 
    Claus G, Vanhove W, Van Damme P, Smagghe G 2018. Challenges in cocoa pollination: the case of Côte d'Ivoire. Pollination in Plants PW Mokwala, art. 4 London: IntechOpen
    [Google Scholar]
  13. 13. 
    Cole LJ, Brocklehurst S, Robertson D, Harrison W, McCracken DI 2017. Exploring the interactions between resource availability and the utilisation of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 246:157–67
    [Google Scholar]
  14. 14. 
    Cook J, Rasplus J-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18:241–48
    [Google Scholar]
  15. 15. 
    Córdoba SA, Cocucci AA. 2011. Flower power: its association with bee power and floral functional morphology in papilionate legumes. Ann. Bot. 108:919–31
    [Google Scholar]
  16. 16. 
    Cutler G, Reeh KW, Sproule JM, Ramanaidu K 2012. Berry unexpected: nocturnal pollination of lowbush blueberry. Can. J. Plant. Sci. 92:707–11
    [Google Scholar]
  17. 17. 
    Dainese M, Montecchiari S, Sitzia T, Sigura M, Marini L 2017. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J. Appl. Ecol. 54:380–88
    [Google Scholar]
  18. 18. 
    Davies L, Ratcliffe GG. 1994. Development rates of some pre-adult stages in blowflies with reference to low temperatures. Med. Vet. Entomol. 8:245–54
    [Google Scholar]
  19. 19. 
    Dear JP. 1985. Calliphoridae (Insecta: Diptera) Fauna N. Z. 8 Wellington, N. Z: Sci. Inform. Cent.
  20. 20. 
    Dey K, Mondal S, Mandal S 2016. Flower visitor diversity with reference to pollen dispersal and pollination of Carica papaya L. Int. J. Adv. Res. Biol. Sci. 3:65
    [Google Scholar]
  21. 21. 
    Donovan BJ. 2007. Apoidea (Insecta: Hymenoptera). 57 Christchurch, N. Z.: Landcare Res.
  22. 22. 
    Donovan SE, Hall MJ, Turner BD, Moncrieff CB 2006. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 20:106–14
    [Google Scholar]
  23. 23. 
    Dziock F. 2006. Life-history data in bioindication procedures, using the example of hoverflies (Diptera, syrphidae) in the Elbe floodplain. Int. Rev. Hydrobiol. 91:341–63
    [Google Scholar]
  24. 24. 
    Ekroos J, Olsson O, Rundlöf M, Wätzold F, Smith HG 2014. Optimizing agri-environment schemes for biodiversity, ecosystem services or both?. Biol. Conserv. 172:65–71
    [Google Scholar]
  25. 25. 
    Forbes S, Northfield T. 2016. Increased pollinator habitat enhances cacao fruit set and predator conservation. Ecol. Appl. 27:887–99
    [Google Scholar]
  26. 26. 
    Forrest JRK, Cross R CaraDonna PJ 2019. Two-year bee, or not two-year bee? How voltinism is affected by temperature and season length in a high-elevation solitary bee. Am. Nat. 193:560–74
    [Google Scholar]
  27. 27. 
    Forrest JRK, Thorp RW, Kremen C, Williams NM 2015. Contrasting patterns in species and functional-trait diversity of bees in an agricultural landscape. J. Appl. Ecol. 52:706–15
    [Google Scholar]
  28. 28. 
    Frier SD, Somers CM, Sheffield CS 2016. Floral longevity, nectar production, pollen release, and stigma receptivity in Haskap (Lonicera caerulea). J. Pollinat. Ecol. 19:81–87
    [Google Scholar]
  29. 29. 
    Gaffney A, Bohman B, Quarrell SR, Brown PH, Allen GR 2018. Frequent insect visitors are not always pollen carriers in hybrid carrot pollination. Insects 9:61
    [Google Scholar]
  30. 30. 
    Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N et al. 2015. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6:8568
    [Google Scholar]
  31. 31. 
    Gardner EM, Gagné RJ, Kendra PE, Montgomery WS, Raguso RA et al. 2018. A flower in fruit's clothing: pollination of jackfruit (Artocarpus heterophyllus, Moraceae) by a new species of gall midge, Clinodiplosis ultracrepidata sp. nov. (Diptera: Cecidomyiidae). Int. J. Plant Sci. 179:350–67
    [Google Scholar]
  32. 32. 
    Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339:1608–11
    [Google Scholar]
  33. 33. 
    Gathmann A, Tscharntke T. 2002. Foraging ranges of solitary bees. J. Anim. Ecol. 71:757–64
    [Google Scholar]
  34. 34. 
    Gatter W, Schmid U. 1990. Wanderungen der Schwebfliegen (Dipter, Syrphidae) am Randecker Maar. Spixiana 15:1–100
    [Google Scholar]
  35. 35. 
    Geusenpfister H. 1987. Studies on the biology and reproductive capacity of Episyrphus balteatus Deg. (Dipt., Syrphidae) under greenhouse conditions. J. Appl. Entomol. 104:261–70
    [Google Scholar]
  36. 36. 
    Ghorpade KD. 1981. Insect prey of syrphids (Diptera) from India and neighbouring countries: a review and bibliography. Trop. Pest Manag. 27:62–82
    [Google Scholar]
  37. 37. 
    Glendinning DR. 1972. Natural pollination of cocoa. New Phytol 71:719–29
    [Google Scholar]
  38. 38. 
    Greenleaf SS, Williams NM, Winfree R, Kremen C 2007. Bee foraging ranges and their relationship to body size. Oecologia 153:589–96
    [Google Scholar]
  39. 39. 
    Gresty CEA, Clare E, Devey DS, Cowan RS, Csiba L et al. 2018. Flower preferences and pollen transport networks for cavity-nesting solitary bees: implications for the design of agri-environment schemes. Ecol. Evol. 8:7574–87
    [Google Scholar]
  40. 40. 
    Hall MA, Nimmo DG, Cunningham SA, Walker K, Bennett AF 2019. The response of wild bees to tree cover and rural land use is mediated by species' traits. Biol. Conserv. 231:1–12
    [Google Scholar]
  41. 41. 
    Hennig EI, Ghazoul J. 2012. Pollinating animals in the urban environment. Urban Ecosyst 15:149–66
    [Google Scholar]
  42. 42. 
    Henning J, Schnitzler FR, Pfeiffer DU, Davies P 2005. Influence of weather conditions on fly abundance and its implications for transmission of rabbit haemorrhagic disease virus in the North Island of NZ. Med. Vet. Entomol. 19:251–62
    [Google Scholar]
  43. 43. 
    Höcherl N, Siede R, Illies I, Gätschenberger H, Tautz J 2011. Evaluation of the nutritive value of maize for honey bees. J. Insect Physiol. 58:278–85
    [Google Scholar]
  44. 44. 
    Hodgkiss D, Brown MJF, Fountain MT 2018. Syrphine hoverflies are effective pollinators of commercial strawberry. J. Pollinat. Ecol. 22:55–66
    [Google Scholar]
  45. 45. 
    Holzschuh A, Dainese M, González-Varo JP, Mudri-Stojnić S, Riedinger V et al. 2016. Mass-flowering crops dilute pollinator abundance in agricultural landscapes across Europe. Ecol. Lett. 19:1228–36
    [Google Scholar]
  46. 46. 
    Hong BM, Hung HQ. 2010. Effect of temperature and diet on the life cycle and predatory capacity of Episyrphus balteatus (De Geer) (Syrphidae: Diptera) cultured on Aphis gossypii (Glover). J. Int. Soc. Southeast Asian Agric. Sci. 16:98–103
    [Google Scholar]
  47. 47. 
    Honsho C, Somsri S, Tetsumura T, Yamashita K, Yonemori K 2007. Effective pollination period in durian (Durio zibethinus Murr.) and the factors regulating it. Sci. Horticult. 111:193–96
    [Google Scholar]
  48. 48. 
    Howlett BG, Davidson MM, Mathers D, Pyke NB 2013. Hedgerow plants to support crop pollination and pest management. Weta 46:3–12
    [Google Scholar]
  49. 49. 
    Howlett BG, Davidson MM, Pattemore DE, Walker MK, Nelson WR 2016. Seasonality of calliphorid and sarcophagid flies across Canterbury arable farms requiring pollinators. N.Z. Plant Protect. 69:290–95
    [Google Scholar]
  50. 50. 
    Howlett BG, Lankin-Vega GO, Pattemore DE 2015. Native and introduced bee abundances on carrot seed crops in New Zealand. N. Z. Plant Prot. 68:373–79
    [Google Scholar]
  51. 51. 
    Howlett BG, Walker MK, McCallum JA, Teulon DAJ 2009. Small flower-visiting arthropods in New Zealand pak choi fields. N. Z. Plant Prot. 62:86–91
    [Google Scholar]
  52. 52. 
    Hwang C, Turner BD. 2005. Spatial and temporal variability of necrophagous Diptera from urban to rural areas. Med. Vet. Entomol. 19:379–91
    [Google Scholar]
  53. 53. 
    Inclán DJ, Dainese M, Cerretti P, Paniccia D, Marini L 2016. Spillover of tachinids and hoverflies from different field margins. Basic Appl. Ecol. 17:33–42
    [Google Scholar]
  54. 54. 
    Inouye DW, Larson BMH, Ssymank A, Kevan PG 2015. Flies and flowers III: ecology of foraging and pollination. J. Pollinat. Ecol. 16:115–33
    [Google Scholar]
  55. 55. 
    Jauker F, Wolters V. 2008. Hover flies are efficient pollinators of oilseed rape. Oecologia 156:819–23
    [Google Scholar]
  56. 56. 
    Joshi S, Ballal CR. 2013. Syrphid predators for biological control of aphids. J. Biol. Control 27:151–70
    [Google Scholar]
  57. 57. 
    Jürgens A, Webber AC, Gottsberger G 2000. Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips. Phytochemistry 55:551–58
    [Google Scholar]
  58. 58. 
    Kevan PG. 1983. Insects as flower visitors and pollinators. Annu. Rev. Entomol. 28:407–53
    [Google Scholar]
  59. 59. 
    Kirk W. 1997. Distribution, abundance, and population dynamics. Thrips as Crop Pests T Lewis 217–58 Wallingford, UK: CAB Int.
    [Google Scholar]
  60. 60. 
    Klaus F, Bass J, Marholt L, Müller B, Klatt B, Kormann U 2015. Hedgerows have a barrier effect and channel pollinator movement in the agricultural landscape. J. Landscape Ecol. 8:22–31
    [Google Scholar]
  61. 61. 
    Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M et al. 2015. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 6:7414
    [Google Scholar]
  62. 62. 
    Klein A-M, Steffan-Dewenter I, Buchori D, Tscharntke T 2002. Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps. Conserv. Biol. 16:1003–14
    [Google Scholar]
  63. 63. 
    Klein A-M, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA et al. 2007. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274:303–13
    [Google Scholar]
  64. 64. 
    Knop E, Gerpe C, Ryser R, Hofmann F, Menz MHM et al. 2018. Rush hours in flower visitors over a day–night cycle. Insect Conserv. Divers. 11:267–75
    [Google Scholar]
  65. 65. 
    Knop EVA, Kleijn D, Herzog F, Schmid B 2006. Effectiveness of the Swiss agri-environment scheme in promoting biodiversity. J. Appl. Ecol. 43:120–27
    [Google Scholar]
  66. 66. 
    Kobayashi K, Tsukamoto S, Tanaka A, Niikura S, Ohsawa R 2010. Selective flower visitation behavior by pollinators in a radish F1 seed production field. Breeding Sci 60:203–11
    [Google Scholar]
  67. 67. 
    Krenn HW, Plant JD, Szucsich NU 2005. Mouthparts of flower-visiting insects. Arthropod Struct. Dev. 34:1–40
    [Google Scholar]
  68. 68. 
    Lim T, Luders L. 2008. Durian flowering, pollination and incompatibility studies. Ann. Appl. Biol. 132:151–65
    [Google Scholar]
  69. 69. 
    Macgregor CJ, Pocock MJO, Fox R, Evans DM 2015. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecol. Entomol. 40:187–98
    [Google Scholar]
  70. 70. 
    Mangels J, Fiedler K, Schneider FD, Blüthgen N 2017. Diversity and trait composition of moths respond to land-use intensification in grasslands: Generalists replace specialists. Biodivers. Conserv. 26:3385–405
    [Google Scholar]
  71. 71. 
    Marcetic LF, Ludoški J, Milankov V 2013. Phenotypic diversity and landscape genetics of Eristalis tenax in a spatially heterogeneous environment, Durmitor Mountain (Montenegro). Ann. Zool. Fenn. 50:262–78
    [Google Scholar]
  72. 72. 
    Martins DJ, Johnson SD. 2009. Distance and quality of natural habitat influence hawkmoth pollination of cultivated papaya. Int. J. Trop. Insect Sci. 29:114–23
    [Google Scholar]
  73. 73. 
    Meyer S, Unternährer D, Arlettaz R, Humbert J-Y, Menz MHM 2017. Promoting diverse communities of wild bees and hoverflies requires a landscape approach to managing meadows. Agric. Ecosyst. Environ. 239:376–84
    [Google Scholar]
  74. 74. 
    Michener CD. 2007. The Bees of the World Baltimore, MD: Johns Hopkins Univ. Press
  75. 75. 
    Morris MC, Li FY. 2000. Coriander (Coriandrum sativum) “companion plants” can attract hoverflies, and may reduce pest infestation in cabbages. N. Z. J. Crop Horticult. Sci. 28:213–17
    [Google Scholar]
  76. 76. 
    Nengel S, Drescher W. 1991. Studies on the biology of Sphaerophoria scripta L. (Diptera, Syrphidae). Acta Horticult 288:98–102
    [Google Scholar]
  77. 77. 
    Nicholas S, Thyselius M, Holden M, Nordström K 2018. Rearing and long-term maintenance of Eristalis tenax hoverflies for research studies. J. Vis. Exp. 135:e57711
    [Google Scholar]
  78. 78. 
    Ollerton J, Winfree R, Tarrant S 2011. How many flowering plants are pollinated by animals. ? Oikos 120:321–26
    [Google Scholar]
  79. 79. 
    Perez C, Segura NA, Patarroyo MA, Bello FJ 2016. Evaluating the biological cycle and reproductive and population parameters of Calliphora vicina (Diptera: Calliphoridae) reared on three different diets. J. Med. Entomol. 53:1268–75
    [Google Scholar]
  80. 80. 
    Perez-Bañón C, Hurtado P, García-Gras E, Rojo S 2013. SEM studies on immature stages of the drone flies (Diptera, Syrphidae): Eristalis similis (Fallen, 1817) and Eristalis tenax (Linnaeus, 1758). Microsc. Res. Technol. 76:853–61
    [Google Scholar]
  81. 81. 
    Pineda A, Marcos-García 2008. Use of selected flowering plants in greenhouses to enhance aphidophagous hoverfly populations (Diptera: Syrphidae). Ann. Soc. Entomol. 44:487–92
    [Google Scholar]
  82. 82. 
    Pokorny T, Loose D, Dyker G, Quezada-Euán JJG, Eltz T 2015. Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie 46:224–37
    [Google Scholar]
  83. 83. 
    Pu D, Shi M, Wu Q, Gao M, Liu J et al. 2014. Flower-visiting insects and their potential impact on transgene flow in rice. J. Appl. Ecol. 51:1357–65
    [Google Scholar]
  84. 84. 
    Rader R, Bartomeus I, Garibaldi LA, Garratt MPD, Howlett BG et al. 2016. Non-bee insects are important contributors to global crop pollination. PNAS 113:146–51
    [Google Scholar]
  85. 85. 
    Raitif J, Plantegenest M, Roussel J-M 2019. From stream to land: ecosystem services provided by stream insects to agriculture. Agric. Ecosyst. Environ. 270–71:32–40
    [Google Scholar]
  86. 86. 
    Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C et al. 2008. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11:1121
    [Google Scholar]
  87. 87. 
    Robinson GE. 1992. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37:637–65
    [Google Scholar]
  88. 88. 
    Rognes K. 1991. Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark Fauna Entomol. Scand. 24 Leiden, Neth: E. Brill
  89. 89. 
    Rønsted N, Weiblen GD, Cook JM, Salamin N, Machado CA, Savolainen V 2006. 60 million years of co-divergence in the fig–wasp symbiosis. Proc. R. Soc. B 272:2593–99
    [Google Scholar]
  90. 90. 
    Rotheray GE. 1993. Colour guide to hoverfly larvae (Diptera: Syrphidae) in Britain and Europe. Dipterists Digest 9:1345409
    [Google Scholar]
  91. 91. 
    Schirmel J, Albrecht M, Bauer P-M, Sutter L, Pfister SC, Entling MH 2018. Landscape complexity promotes hoverflies across different types of semi-natural habitats in farmland. J. Appl. Ecol. 55:1747–58
    [Google Scholar]
  92. 92. 
    Senapathi D, Goddard MA, Kunin WE, Baldock KCR 2017. Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct. Ecol. 31:26–37
    [Google Scholar]
  93. 93. 
    Sjödin NE, Bengtsson J, Ekbom B 2008. The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects. J. Appl. Ecol. 45:763–72
    [Google Scholar]
  94. 94. 
    Slauson L. 2000. Pollination biology of two chiropterophilous agaves in Arizona. Am. J. Bot. 87:825–36
    [Google Scholar]
  95. 95. 
    Smith JP, Heard TA, Beekman M, Gloag R 2017. Flight range of the Australian stingless bee Tetragonula carbonaria (Hymenoptera: Apidae). Austral. Entomol. 56:50–53
    [Google Scholar]
  96. 96. 
    Speight MCD. 2011. Species Accounts of European Syrphidae (Diptera), 2014 Dublin: Syrph Net Publ.
  97. 97. 
    Stanley DA, Stout JC. 2013. Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J. Appl. Ecol. 50:335–44
    [Google Scholar]
  98. 98. 
    Stavert JR, Pattemore DE, Bartomeus I, Gaskett AC, Beggs JR, Diekötter T 2018. Exotic flies maintain pollination services as native pollinators decline with agricultural expansion. J. Appl. Ecol. 55:1737–46
    [Google Scholar]
  99. 99. 
    Stewart RIA, Andersson GKS, Brönmark C, Klatt BK, Hansson L-A et al. 2017. Ecosystem services across the aquatic–terrestrial boundary: linking ponds to pollination. Basic Appl. Ecol. 18:13–20
    [Google Scholar]
  100. 100. 
    Tellam RL, Bowles VM. 1997. Control of blowfly strike in sheep: current strategies and future prospects. Int. J. Parasitol. 27:261–73
    [Google Scholar]
  101. 101. 
    Thomson AJ, Davies DM. 1973. The biology of Pollenia rudis, the cluster fly (Diptera: Calliphoridae): I. Host location by first-instar larvae. Can. Entomol. 105:335–41
    [Google Scholar]
  102. 102. 
    Trejo-Salazar R-E, Eguiarte LE, Suro-Piñera D, Medellin RA 2016. Save our bats, save our tequila: industry and science join forces to help bats and agaves. Nat. Areas J. 36:523–30
    [Google Scholar]
  103. 103. 
    Tuo Y, Koua HK, Hala N 2011. Biology of Elaeidobius kamerunicus and Elaeidobius plagiatus (Coleoptera: Curculionidae) main pollinators of oil palm in West Africa. Eur. J. Sci. Res. 49:426–32
    [Google Scholar]
  104. 104. 
    Ullmann KS, Meisner MH, Williams NM 2016. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 232:240–46
    [Google Scholar]
  105. 105. 
    van Rijn PCJ, Kooijman J, Wäckers FL 2013. The contribution of floral resources and honeydew to the performance of predatory hoverflies (Diptera: Syrphidae). Biol. Control 67:32–38
    [Google Scholar]
  106. 106. 
    Walker MK, Howlett BG, Wallace AR, McCallum JA, Teulon DAJ 2011. The diversity and abundance of small arthropods in onion, Allium cepa, seed crops, and their potential role in pollination. J. Insect Sci. 11:98
    [Google Scholar]
  107. 107. 
    Wang R, Aylwin R, Barwell L, Chen X-Y, Chen Y et al. 2015. The fig wasp followers and colonists of a widely introduced fig tree, Ficus microcarpa. Insect Conserv. Divers 8:322–36
    [Google Scholar]
  108. 108. 
    Wardhaugh CW. 2015. How many species of arthropods visit flowers. ? Arthropod-Plant Interact 9:547–65
    [Google Scholar]
  109. 109. 
    Wayo K, Phankaew C, Stewart AB, Bumrungsri S 2018. Bees are supplementary pollinators of self-compatible chiropterophilous durian. J. Trop. Ecol. 34:41–52
    [Google Scholar]
  110. 110. 
    Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG 2010. Ecological and life history traits predict bee species responses to environmental disturbances. Biol. Conserv. 143:2280–91
    [Google Scholar]
  111. 111. 
    Winfree R, Reilly JR, Bartomeus I, Cariveau DP, Williams NM, Gibbs J 2018. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359:791–93
    [Google Scholar]
  112. 112. 
    Yeates D, Wiegmann B 2005. The Evolutionary Biology of Flies New York: Columbia Univ. Press
  113. 113. 
    Zurbuchen A, Landert L, Klaiber J, Muller A, Hein S, Dorn S 2010. Maximum foraging ranges in solitary bees: Only few individuals have the capability to cover long foraging distances. Biol. Conserv. 143:669–76
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025055
Loading
/content/journals/10.1146/annurev-ento-011019-025055
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error