1932

Abstract

The RNA interference (RNAi) triggered by short/small interfering RNA (siRNA) was discovered in nematodes and found to function in most living organisms. RNAi has been widely used as a research tool to study gene functions and has shown great potential for the development of novel pest management strategies. RNAi is highly efficient and systemic in coleopterans but highly variable or inefficient in many other insects. Differences in double-stranded RNA (dsRNA) degradation, cellular uptake, inter- and intracellular transports, processing of dsRNA to siRNA, and RNA-induced silencing complex formation influence RNAi efficiency. The basic dsRNA delivery methods include microinjection, feeding, and soaking. To improve dsRNA delivery, various new technologies, including cationic liposome–assisted, nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries, have been developed. Major challenges to widespread use of RNAi in insect pest management include variable RNAi efficiency among insects, lack of reliable dsRNA delivery methods, off-target and nontarget effects, and potential development of resistance in insect populations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-011019-025224
2020-01-07
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ento/65/1/annurev-ento-011019-025224.html?itemId=/content/journals/10.1146/annurev-ento-011019-025224&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK 2003. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 67:657–85
    [Google Scholar]
  2. 2. 
    Arimatsu Y, Kotani E, Sugimura Y, Furusawa T 2007. Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 37:176–83
    [Google Scholar]
  3. 3. 
    Aronstein K, Pankiw T, Saldivar E 2006. SID-1 is implicated in systemic gene silencing in the honey bee. J. Apic. Res. 45:20–24
    [Google Scholar]
  4. 4. 
    Bai H, Palli SR. 2016. Identification of G protein-coupled receptors required for vitellogenin uptake into the oocytes of the red flour beetle, Tribolium castaneum. Sci. Rep. 6:27648
    [Google Scholar]
  5. 5. 
    Bartlett DW, Davis ME. 2007. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing. Biotechnol. Bioeng. 97:909–21
    [Google Scholar]
  6. 6. 
    Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P et al. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25:1322–26
    [Google Scholar]
  7. 7. 
    Bellés X. 2009. Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu. Rev. Entomol. 55:111–28
    [Google Scholar]
  8. 8. 
    Ben-Amar A, Daldoul S, Reustle GM, Krczal G, Mliki A 2016. Reverse genetics and high throughput sequencing methodologies for plant functional genomics. Curr. Genom. 17:460–75
    [Google Scholar]
  9. 9. 
    Biryukova I, Ye T. 2015. Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genom 16:278
    [Google Scholar]
  10. 10. 
    Bodemann RR, Rahfeld P, Stock M, Kunert M, Wielsch N et al. 2012. Precise RNAi-mediated silencing of metabolically active proteins in the defense secretions of juvenile leaf beetles. Proc. Biol. Sci. 279:4126–34
    [Google Scholar]
  11. 11. 
    Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W et al. 2012. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLOS ONE 7:e47534
    [Google Scholar]
  12. 12. 
    Campbell CL, Black WC, Hess AM, Foy BD 2008. Comparative genomics of small RNA regulatory pathway components in vector mosquitoes. BMC Genom 9:425
    [Google Scholar]
  13. 13. 
    Cappelle K, de Oliveira CFR, Van Eynde B, Christiaens O, Smagghe G 2016. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol. Biol. 25:315–23
    [Google Scholar]
  14. 14. 
    Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–55
    [Google Scholar]
  15. 15. 
    Christiaens O, Swevers L, Smagghe G 2014. dsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307–14
    [Google Scholar]
  16. 16. 
    Chung SH, Jing X, Luo Y, Douglas AE 2018. Targeting symbiosis-related insect genes by RNAi in the pea aphid–Buchnera symbiosis. Insect Biochem. Mol. Biol. 95:55–63
    [Google Scholar]
  17. 17. 
    Ciudad L, Piulachs MD, Bellés X 2006. Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS J 273:325–35
    [Google Scholar]
  18. 18. 
    Cooper AM, Silver K, Zhang JZ, Park Y, Zhu KY 2019. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag. Sci. 75:18–28
    [Google Scholar]
  19. 19. 
    Cullen BR. 2014. Viruses and RNA interference: issues and controversies. J. Virol. 88:12934–36
    [Google Scholar]
  20. 20. 
    Czech B, Malone CD, Zhou R, Stark A, Schlingeheyde C et al. 2008. An endogenous small interfering RNA pathway in Drosophila. Nature 453:798–802
    [Google Scholar]
  21. 21. 
    Das S, Debnath N, Cui Y, Unrine J, Palli SR 2015. Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Appl. Mater. Interfaces 7:19530–35
    [Google Scholar]
  22. 22. 
    Dow JA. 1992. pH gradients in lepidopteran midgut. J. Exp. Biol. 172:355–75
    [Google Scholar]
  23. 23. 
    Dowling D, Pauli T, Donath A, Meusemann K, Podsiadlowski L et al. 2016. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biol. Evol. 8:3784–93
    [Google Scholar]
  24. 24. 
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–11
    [Google Scholar]
  25. 25. 
    Ghildiyal M, Seitz H, Horwich MD, Li CJ, Du TT et al. 2008. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320:1077–81
    [Google Scholar]
  26. 26. 
    Gillet FX, Garcia RA, Macedo LLP, Albuquerque EVS, Silva MCM, Grossi-de-Sa MF 2017. Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests. Front. Physiol. 8:256
    [Google Scholar]
  27. 27. 
    Guo WC, Fu KY, Yang S, Li XX, Li GQ 2015. Instar-dependent systemic RNA interference response in Leptinotarsa decemlineata larvae. Pestic. Biochem. Physiol. 123:64–73
    [Google Scholar]
  28. 28. 
    Guo X, Wang Y, Sinakevitch I, Lei H, Smith BH 2018. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera. J. Insect Physiol. 111:47–52
    [Google Scholar]
  29. 29. 
    Han BW, Wang W, Li C, Weng Z, Zamore PD 2015. piRNA-guided transposon cleavage initiates Zucchini-dependent, phased piRNA production. Science 348:817–21
    [Google Scholar]
  30. 30. 
    Hartig JV, Tomari Y, Förstemann K 2007. piRNAs—the ancient hunters of genome invaders. Genes Dev 21:1707–13
    [Google Scholar]
  31. 31. 
    He B, Chu Y, Yin M, Mullen K, An C, Shen J 2013. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv. Mater. 25:4580–84
    [Google Scholar]
  32. 32. 
    Heigwer F, Port F, Boutros M 2018. RNA interference (RNAi) screening in Drosophila. Genetics 208:853–74
    [Google Scholar]
  33. 33. 
    Huang JH, Lee HJ. 2011. RNA interference unveils functions of the hypertrehalosemic hormone on cyclic fluctuation of hemolymph trehalose and oviposition in the virgin female Blattella germanica. J. Insect Physiol 57:858–64
    [Google Scholar]
  34. 34. 
    Hughes CL, Kaufman TC. 2000. RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127:3683–94
    [Google Scholar]
  35. 35. 
    Hunter W, Ellis J, Vanengelsdorp D, Hayes J, Westervelt D et al. 2010. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLOS Pathog 6:e1001160
    [Google Scholar]
  36. 36. 
    Ivashuta S, Zhang YJ, Wiggins BE, Ramaseshadri P, Segers GC et al. 2015. Environmental RNAi in herbivorous insects. RNA 21:840–50
    [Google Scholar]
  37. 37. 
    Jaubert-Possamai S, Rispe C, Tanguy S, Gordon K, Walsh T et al. 2010. Expansion of the miRNA pathway in the hemipteran insect Acyrthosiphon pisum. Mol. Biol. Evol 27:979–87
    [Google Scholar]
  38. 38. 
    Joga MR, Zotti MJ, Smagghe G, Christiaens O 2016. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front. Physiol. 7:553
    [Google Scholar]
  39. 39. 
    Karlikow M, Goic B, Mongelli V, Salles A, Schmitt C et al. 2016. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells. Sci. Rep. 6:27085
    [Google Scholar]
  40. 40. 
    Kennerdell JR, Carthew RW. 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–26
    [Google Scholar]
  41. 41. 
    Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W et al. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE 13:e0197059
    [Google Scholar]
  42. 42. 
    Khajuria C, Velez AM, Rangasamy M, Wang HC, Fishilevich E et al. 2015. Parental RNA interference of genes involved in embryonic development of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Insect Biochem. Mol. Biol. 63:54–62
    [Google Scholar]
  43. 43. 
    Kim K, Lee YS, Harris D, Nakahara K, Carthew RW 2006. The RNAi pathway initiated by Dicer-2 in Drosophila. Cold Spring Harb. Symp. Quant. Biol 71:39–44
    [Google Scholar]
  44. 44. 
    Kim YH, Soumaila Issa M, Cooper AM, Zhu KY 2015. RNA interference: applications and advances in insect toxicology and insect pest management. Pestic. Biochem. Physiol. 120:109–17
    [Google Scholar]
  45. 45. 
    Kobayashi I, Tsukioka H, Komoto N, Uchino K, Sezutsu H et al. 2012. SID-1 protein of Caenorhabditis elegans mediates uptake of dsRNA into Bombyx cells. Insect Biochem. Mol. Biol. 42:148–54
    [Google Scholar]
  46. 46. 
    Kumar P, Pandit SS, Steppuhn A, Baldwin IT 2014. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. PNAS 111:1245–52
    [Google Scholar]
  47. 47. 
    Laudani F, Strano CP, Edwards MG, Malacrino A, Campolo O et al. 2017. RNAi-mediated gene silencing in Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Open Life Sci 12:214–22
    [Google Scholar]
  48. 48. 
    Lechanteur A, Sanna V, Duchemin A, Evrard B, Mottet D, Piel G 2018. Cationic liposomes carrying siRNA: impact of lipid composition on physicochemical properties, cytotoxicity and endosomal escape. Nanomaterials 8:E270
    [Google Scholar]
  49. 49. 
    Lee Y, Kim M, Han JJ, Yeom KH, Lee S et al. 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–60
    [Google Scholar]
  50. 50. 
    Lee YS, Nakahara K, Pham JW, Kim K, He Z et al. 2004. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81
    [Google Scholar]
  51. 51. 
    Leggewie M, Schnettler E. 2018. RNAi-mediated antiviral immunity in insects and their possible application. Curr. Opin. Virol. 32:108–14
    [Google Scholar]
  52. 52. 
    Lewis SH, Salmela H, Obbard DJ 2016. Duplication and diversification of dipteran Argonaute genes, and the evolutionary divergence of Piwi and Aubergine. Genome Biol. Evol. 8:507–18
    [Google Scholar]
  53. 53. 
    Li D, Zhang JQ, Wang Y, Liu XJ, Ma EB et al. 2015. Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem. Mol. Biol. 58:46–54
    [Google Scholar]
  54. 54. 
    Li XX, Dong XL, Zou C, Zhang HY 2015. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Sci. Rep. 5:8700
    [Google Scholar]
  55. 55. 
    Li Z, Zeng B, Ling L, Xu J, You L et al. 2015. Enhancement of larval RNAi efficiency by over-expressing Argonaute2 in Bombyx mori. Int. J. Biol. Sci 11:176–85
    [Google Scholar]
  56. 56. 
    Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC et al. 2013. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honeybee. PNAS 110:12750–55
    [Google Scholar]
  57. 57. 
    Lozano J, Gomez-Orte E, Lee HJ, Bellés X 2012. Super-induction of Dicer-2 expression by alien double-stranded RNAs: an evolutionary ancient response to viral infection?. Dev. Genes Evol. 222:229–35
    [Google Scholar]
  58. 58. 
    Lu YH, Park Y, Gao XW, Zhang X, Yao JX et al. 2012. Cholinergic and non-cholinergic functions of two acetylcholinesterase genes revealed by gene-silencing in Tribolium castaneum. Sci. Rep 2:288
    [Google Scholar]
  59. 59. 
    Lucas KJ, Zhao B, Roy S, Gervaise AL, Raikhel AS 2015. Mosquito-specific microRNA-1890 targets the juvenile hormone-regulated serine protease JHA15 in the female mosquito gut. RNA Biol 12:1383–90
    [Google Scholar]
  60. 60. 
    Luo Y, Chen Q, Luan J, Chung SH, Van Eck J et al. 2017. Towards an understanding of the molecular basis of effective RNAi against a global insect pest, the whitefly Bemisia tabaci. Insect Biochem. Mol. Biol 88:21–29
    [Google Scholar]
  61. 61. 
    Luo Y, Wang X, Wang X, Yu D, Chen B, Kang L 2013. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Mol. Biol. 22:574–83
    [Google Scholar]
  62. 62. 
    Luo Y, Wang X, Yu D, Kang L 2012. The SID-1 double-stranded RNA transporter is not required for systemic RNAi in the migratory locust. RNA Biol 9:663–71
    [Google Scholar]
  63. 63. 
    Macedo LLP, Antonino de Souza JD Jr., Coelho RR, Fonseca FCA, Firmino AAP et al. 2017. Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil. Biotechnol. Res. Innov. 1:72–86
    [Google Scholar]
  64. 64. 
    Macrae IJ, Li F, Zhou K, Cande WZ, Doudna JA 2006. Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb. Symp. Quant. Biol. 71:73–80
    [Google Scholar]
  65. 65. 
    Malone CD, Brennecke J, Dus M, Stark A, McCombie WR et al. 2009. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–35
    [Google Scholar]
  66. 66. 
    Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY et al. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25:1307–13
    [Google Scholar]
  67. 67. 
    Marques JT, Kim K, Wu PH, Alleyne TM, Jafari N, Carthew RW 2010. Loqs and R2D2 act sequentially in the siRNA pathway in Drosophila. Nat. Struct. Mol. Biol 17:24–30
    [Google Scholar]
  68. 68. 
    Martin D, Maestro O, Cruz J, Mane-Padros D, Bellés X 2006. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. J. Insect Physiol 52:410–16
    [Google Scholar]
  69. 69. 
    Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD 2005. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–20
    [Google Scholar]
  70. 70. 
    McEwan DL, Weisman AS, Huntert CP 2012. Uptake of extracellular double-stranded RNA by SID-2. Mol. Cell. 47:746–54
    [Google Scholar]
  71. 71. 
    Meister G. 2013. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 14:447–59
    [Google Scholar]
  72. 72. 
    Miller SC, Brown SJ, Tomoyasu Y 2008. Larval RNAi in Drosophila?. Dev. Genes Evol. 218:505–10
    [Google Scholar]
  73. 73. 
    Miller SC, Miyata K, Brown SJ, Tomoyasu Y 2012. Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLOS ONE 7:e47431
    [Google Scholar]
  74. 74. 
    Mogilicherla K, Howell JL, Palli SR 2018. Improving RNAi in the brown marmorated stink bug: identification of target genes and reference genes for RT-qPCR. Sci. Rep. 8:3720
    [Google Scholar]
  75. 75. 
    Mondal M, Mansfield K, Flynt A 2018. siRNAs and piRNAs collaborate for transposon control in the two-spotted spider mite. RNA 24:899–907
    [Google Scholar]
  76. 76. 
    Mongelli V, Saleh M-C. 2016. Bugs are not to be silenced: Small RNA pathways and antiviral responses in insects. Annu. Rev. Virol. 3:573–89
    [Google Scholar]
  77. 77. 
    Murphy KA, Tabuloc CA, Cervantes KR, Chiu JC 2016. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci. Rep. 6:22587
    [Google Scholar]
  78. 78. 
    Nandety RS, Kuo YW, Nouri S, Falk BW 2015. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 6:8–19
    [Google Scholar]
  79. 79. 
    Natarajan P, Sukthankar P, Changstrom J, Holland CS, Barry S et al. 2018. Synthesis and characterization of multifunctional branched amphiphilic peptide bilayer conjugated gold nanoparticles. ACS Omega 3:11071–83
    [Google Scholar]
  80. 80. 
    Ni M, Ma W, Wang X, Gao M, Dai Y et al. 2017. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 15:1204–13
    [Google Scholar]
  81. 81. 
    Ninova M, Griffiths-Jones S, Ronshaugen M 2017. Abundant expression of somatic transposon-derived piRNAs throughout Tribolium castaneum embryogenesis. Genome Biol 18:184
    [Google Scholar]
  82. 82. 
    Olivieri D, Senti KA, Subramanian S, Sachidanandam R, Brennecke J 2012. The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol. Cell 47:954–69
    [Google Scholar]
  83. 83. 
    Ortiz-Rivas B, Jaubert-Possamai S, Tanguy S, Gauthier JP, Tagu D, Claude R 2012. Evolutionary study of duplications of the miRNA machinery in aphids associated with striking rate acceleration and changes in expression profiles. BMC Evol. Biol. 12:216
    [Google Scholar]
  84. 84. 
    Palli SR. 2014. RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Curr. Opin. Insect Sci. 6:1–8
    [Google Scholar]
  85. 85. 
    Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ 2004. A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117:83–94
    [Google Scholar]
  86. 86. 
    Pinheiro DH, Velez AM, Fishilevich E, Wang HC, Carneiro NP et al. 2018. Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLOS ONE 13:e0201849
    [Google Scholar]
  87. 87. 
    Pitino M, Coleman AD, Maffei ME, Ridout CJ, Hogenhout SA 2011. Silencing of aphid genes by dsRNA feeding from plants. PLOS ONE 6:e25709
    [Google Scholar]
  88. 88. 
    Poreddy S, Li J, Baldwin IT 2017. Plant-mediated RNAi silences midgut-expressed genes in congeneric lepidopteran insects in nature. BMC Plant Biol. 17:199
    [Google Scholar]
  89. 89. 
    Powell ME, Bradish HM, Gatehouse JA, Fitches EC 2017. Systemic RNAi in the small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae), a serious pest of the European honey bee (Apis mellifera). Pest Manag. Sci. 73:53–63
    [Google Scholar]
  90. 90. 
    Prentice K, Christiaens O, Pertry I, Bailey A, Niblett C et al. 2017. RNAi-based gene silencing through dsRNA injection or ingestion against the African sweet potato weevil Cylas puncticollis (Coleoptera: Brentidae). Pest Manag. Sci. 73:44–52
    [Google Scholar]
  91. 91. 
    Price DR, Gatehouse JA. 2008. RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400
    [Google Scholar]
  92. 92. 
    Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Radmark O 2002. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J 21:5864–74
    [Google Scholar]
  93. 93. 
    Ramesh Kumar D, Saravana Kumar P, Gandhi MR, Al-Dhabi NA, Paulraj MG, Ignacimuthu S 2016. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 86:89–95
    [Google Scholar]
  94. 94. 
    Rangasamy M, Siegfried BD. 2012. Validation of RNA interference in western corn rootworm Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) adults. Pest Manag. Sci. 68:587–91
    [Google Scholar]
  95. 95. 
    Ren D, Cai Z, Song J, Wu Z, Zhou S 2014. dsRNA uptake and persistence account for tissue-dependent susceptibility to RNA interference in the migratory locust, Locusta migratoria. Insect Mol. Biol. 23:175–84
    [Google Scholar]
  96. 96. 
    Rodrigues TB, Dhandapani RK, Duan JJ, Palli SR 2017. RNA interference in the Asian longhorned beetle: identification of key RNAi genes and reference genes for RT-qPCR. Sci. Rep. 7:8913
    [Google Scholar]
  97. 97. 
    Rodrigues TB, Rieske LK, Duan JJ, Mogilicherla K, Palli SR 2017. Development of RNAi method for screening candidate genes to control emerald ash borer, Agrilus planipennis. Sci. Rep. 7:7379
    [Google Scholar]
  98. 98. 
    Rosa C, Kuo YW, Wuriyanghan H, Falk BW 2018. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 56:581–610
    [Google Scholar]
  99. 99. 
    Rubio M, Maestro JL, Piulachs M-D, Bellés X 2018. Conserved association of Argonaute 1 and 2 proteins with miRNA and siRNA pathways throughout insect evolution, from cockroaches to flies. Biochim. Biophys. Acta Gene Regul. Mech. 1861:554–60
    [Google Scholar]
  100. 100. 
    Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E et al. 2006. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat. Cell Biol. 8:793–802
    [Google Scholar]
  101. 101. 
    San Miguel K, Scott JG 2016. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag. Sci. 72:801–9
    [Google Scholar]
  102. 102. 
    Shi X, Zhang Y, Zhu KY, Ma E, Zhang J et al. 2017. Comparison of silencing efficacy of the antenna-rich genes by different dsRNA delivery methods in Locusta migratoria. Chin. J. Appl. Entomol 54:780–90
    [Google Scholar]
  103. 103. 
    Shih JD, Hunter CP. 2011. SID-1 is a dsRNA-selective dsRNA-gated channel. RNA 17:1057–65
    [Google Scholar]
  104. 104. 
    Shukla JN, Kalsi M, Sethi A, Narva KE, Fishilevich E et al. 2016. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol 13:656–69
    [Google Scholar]
  105. 105. 
    Singh IK, Singh S, Mogilicherla K, Shukla JN, Palli SR 2017. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7:17059
    [Google Scholar]
  106. 106. 
    Siomi MC, Sato K, Pezic D, Aravin AA 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12:246–58
    [Google Scholar]
  107. 107. 
    Song H, Fan Y, Zhang J, Cooper AM, Silver K et al. 2019. Contributions of dsRNases to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci 75:1707–17
    [Google Scholar]
  108. 108. 
    Song HF, Zhang JQ, Li DQ, Cooper AMW, Silver K et al. 2017. A double-stranded RNA degrading enzyme reduces the efficiency of oral RNA interference in migratory locust. Insect Biochem. Mol. Biol. 86:68–80
    [Google Scholar]
  109. 109. 
    Spit J, Philips A, Wynant N, Santos D, Plaetinck G, Broeck JV 2017. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 81:103–16
    [Google Scholar]
  110. 110. 
    Suzuki T, Nunes MA, Espana MU, Namin HH, Jin PY et al. 2017. RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: a comparative analysis of five methods for gene silencing. PLOS ONE 12:e0180654
    [Google Scholar]
  111. 111. 
    Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF et al. 2014. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21:743–53
    [Google Scholar]
  112. 112. 
    Swevers L, Broeck JV, Smagghe G 2013. The possible impact of persistent virus infection on the function of the RNAi machinery in insects: a hypothesis. Front. Physiol. 4:319
    [Google Scholar]
  113. 113. 
    Swevers L, Liu J, Smagghe G 2018. Defense mechanisms against viral infection in Drosophila: RNAi and non-RNAi. Viruses 10:E230
    [Google Scholar]
  114. 114. 
    Taning CNT, Christiaens O, Berkvens N, Casteels H, Maes M, Smagghe G 2016. Oral RNAi to control Drosophila suzukii: laboratory testing against larval and adult stages. J. Pest Sci. 89:803–14
    [Google Scholar]
  115. 115. 
    Taning CNT, Christiaens O, Li XX, Swevers L, Casteels H et al. 2018. Engineered flock house virus for targeted gene suppression through RNAi in fruit flies (Drosophila melanogaster) in vitro and in vivo. Front. Physiol. 9:805
    [Google Scholar]
  116. 116. 
    Tassetto M, Kunitomi M, Andino R 2017. Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169:314–25
    [Google Scholar]
  117. 117. 
    Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H et al. 2011. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 57:231–45
    [Google Scholar]
  118. 118. 
    Thakur N, Upadhyay SK, Verma PC, Chandrashekar K, Tuli R, Singh PK 2014. Enhanced whitefly resistance in transgenic tobacco plants expressing double stranded RNA of v-ATPase A gene. PLOS ONE 9:e87235
    [Google Scholar]
  119. 119. 
    Tian HG, Peng H, Yao Q, Chen HX, Xie Q et al. 2009. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLOS ONE 4:e6225
    [Google Scholar]
  120. 120. 
    Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G 2008. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10
    [Google Scholar]
  121. 121. 
    Van Den Beek M, Da Silva B, Pouch J, Chaouche MEA, Carre C, Antoniewski C 2018. Dual-layer transposon repression in heads of Drosophila melanogaster. RNA 24:1749–60
    [Google Scholar]
  122. 122. 
    Wang G, Jiang L, Zhu L, Cheng T, Niu W et al. 2013. Characterization of Argonaute family members in the silkworm, Bombyx mori. Insect Sci. 20:78–91
    [Google Scholar]
  123. 123. 
    Wang K, Peng Y, Pu J, Fu W, Wang J, Han Z 2016. Variation in RNAi efficacy among insect species is attributable to dsRNA degradation in vivo. Insect Biochem. Mol. Biol. 77:1–9
    [Google Scholar]
  124. 124. 
    Wang W, Han BW, Tipping C, Ge DT, Zhang Z et al. 2015. Slicing and binding by Ago3 or Aub trigger Piwi-bound piRNA production by distinct mechanisms. Mol. Cell 59:819–30
    [Google Scholar]
  125. 125. 
    Whitten M, Dyson P. 2017. Gene silencing in non-model insects: overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. Bioessays 39:31600247
    [Google Scholar]
  126. 126. 
    Whyard S, Singh AD, Wong S 2009. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39:824–32
    [Google Scholar]
  127. 127. 
    Winston WM, Molodowitch C, Hunter CP 2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–59
    [Google Scholar]
  128. 128. 
    Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP 2007. Caenorhabditis elegans SID-2 is required for environmental RNA interference. PNAS 104:10565–70
    [Google Scholar]
  129. 129. 
    Wu H, March J, Bentley W 2016. Gene silencing in insect cells using RNAi. Methods Mol. Biol. 1350:469–76
    [Google Scholar]
  130. 130. 
    Wynant N, Santos D, Van Wielendaele P, Vanden Broeck J 2014. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 23:320–29
    [Google Scholar]
  131. 131. 
    Wynant N, Santos D, Vanden Broeck J 2014. Biological mechanisms determining the success of RNA interference in insects. Int. Rev. Cell Mol. Biol. 312:139–67
    [Google Scholar]
  132. 132. 
    Wynant N, Santos D, Verdonck R, Spit J, Van Wielendaele P, Vanden Broeck J 2014. Identification, functional characterization and phylogenetic analysis of double stranded RNA degrading enzymes present in the gut of the desert locust, Schistocerca gregaria. . Insect Biochem. Mol. Biol. 46:1–8
    [Google Scholar]
  133. 133. 
    Wynant N, Verlinden H, Breugelmans B, Simonet G, Vanden Broeck J 2012. Tissue-dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca gregaria. Insect Biochem. Mol. Biol. 42:911–17
    [Google Scholar]
  134. 134. 
    Xiao D, Gao XW, Xu JP, Liang X, Li QQ et al. 2015. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochem. Mol. Biol. 60:68–77
    [Google Scholar]
  135. 135. 
    Xu J, Nagata Y, Mon H, Li Z, Zhu L et al. 2013. Soaking RNAi-mediated modification of Sf9 cells for baculovirus expression system by ectopic expression of Caenorhabditis elegans SID-1. Appl. Microbiol. Biotechnol. 97:5921–31
    [Google Scholar]
  136. 136. 
    Yang ML, Wei YY, Jiang F, Wang YL, Guo XJ et al. 2014. MicroRNA-133 inhibits behavioral aggregation by controlling dopamine synthesis in locusts. PLOS Genet 10:e1004206
    [Google Scholar]
  137. 137. 
    Ylla G, Fromm B, Piulachs MD, Bellés X 2016. The microRNA toolkit of insects. Sci. Rep. 6:37736
    [Google Scholar]
  138. 138. 
    Yoon JS, Gurusamy D, Palli SR 2017. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem Mol. Biol. 90:53–60
    [Google Scholar]
  139. 139. 
    Yoon JS, Mogilicherla K, Gurusamy D, Chen X, Chereddy S, Palli SR 2018. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. PNAS 115:8334–39
    [Google Scholar]
  140. 140. 
    Yoon JS, Shukla JN, Gong ZJ, Mogilicherla K, Palli SR 2016. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: identification of key contributors. Insect Biochem. Mol. Biol. 78:78–88
    [Google Scholar]
  141. 141. 
    Yu N, Christiaens O, Liu JS, Niu JZ, Cappelle K et al. 2013. Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14
    [Google Scholar]
  142. 142. 
    Yu R, Liu W, Li D, Zhao X, Ding G et al. 2016. Helicoidal organization of chitin in the cuticle of the migratory locust requires the function of the chitin deacetylase 2 enzyme (LmCDA2). J. Biol. Chem. 291:24352–63
    [Google Scholar]
  143. 143. 
    Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC 2011. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLOS ONE 6:e20504
    [Google Scholar]
  144. 144. 
    Zhang J, Khan SA, Hasse C, Ruf S, Heckel DG, Bock R 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–94
    [Google Scholar]
  145. 145. 
    Zhang TT, Liu WW, Li DQ, Gao L, Ma EB et al. 2018. LmCht5–1 promotes pro-nymphal molting during locust embryonic development. Insect Biochem. Mol. Biol. 101:124–30
    [Google Scholar]
  146. 146. 
    Zhang X, Mysore K, Flannery E, Michel K, Severson DW et al. 2015. Chitosan/interfering RNA nanoparticle mediated gene silencing in disease vector mosquito larvae. J. Vis. Exp. 97:e52523
    [Google Scholar]
  147. 147. 
    Zhang X, Zhang J, Zhu KY 2010. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol. Biol. 19:683–93
    [Google Scholar]
  148. 148. 
    Zhang YT, Cui J, Zhou YZ, Cao J, Gong HY et al. 2018. Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick-Borne Dis 9:638–44
    [Google Scholar]
  149. 149. 
    Zheng Y, Hu Y, Yan S, Zhou H, Song D et al. 2019. A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Manag. Sci 75:1993–99
    [Google Scholar]
  150. 150. 
    Zhou R, Hotta I, Denli AM, Hong P, Perrimon N, Hannon GJ 2008. Comparative analysis of argonaute-dependent small RNA pathways in Drosophila. Mol. Cell 32:592–99
    [Google Scholar]
  151. 151. 
    Zhu F, Gujar H, Gordon JR, Haynes KF, Potter MF, Palli SR 2013. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci. Rep. 3:1456
    [Google Scholar]
  152. 152. 
    Zhu F, Parthasarathy R, Bai H, Woithe K, Kaussmann M et al. 2010. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. PNAS 107:8557–62
    [Google Scholar]
  153. 153. 
    Zhu F, Xu J, Palli R, Ferguson J, Palli SR 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag. Sci. 67:175–82
    [Google Scholar]
  154. 154. 
    Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G 2018. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 74:1239–50
    [Google Scholar]
  155. 155. 
    Zuhorn IS, Engberts JBFN, Hoekstra D 2007. Gene delivery by cationic lipid vectors: overcoming cellular barriers. Eur. Biophys. J. 36:349–62
    [Google Scholar]
/content/journals/10.1146/annurev-ento-011019-025224
Loading
/content/journals/10.1146/annurev-ento-011019-025224
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error