Skip to main content
Log in

Co-culture with Enterobacter cloacae does not Enhance Virus Resistance to Thermal and Chemical Treatments

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Human noroviruses (hNoV) are the primary cause of foodborne disease in the USA. Most studies on inactivation kinetics of hNoV and its surrogates are performed in monoculture, while the microbial ecosystem effect on virus inactivation remains limited. This study investigated the persistence of hNoV surrogates, murine norovirus (MNV) and Tulane virus (TuV), along with Aichi virus (AiV) under thermal and chemical inactivation in association with Gram-negative (Enterobacter cloacae) bacteria. Thermal inactivation of viruses in co-culture with E. cloacae revealed no protective effects of bacteria. At 56 °C, AiV with and without bacteria was completely inactivated by 10 min with decimal reduction values (D-values) of 41 and 43 s, respectively. Similar results were also observed for TuV. Conversely, MNV with bacteria was completely inactivated by 10 min while MNV alone remained stable up to 30 min at 56 °C. Both MNV and TuV were slightly more stable than AiV at 63 °C with TuV detection up to 2 min without bacteria. For chemical inactivation on stainless steel surfaces, viruses alone and in association with bacteria were treated with 1000 ppm sodium hypochlorite. Virus association with bacteria had no significant effect (p > 0.05) on virus resistance to bleach inactivation compared to virus alone. Specifically, exposure to 1000 ppm bleach for 5 min resulted in an average of 3.86, 2.14, and 0.94 log10 PFU/ml reductions for TuV, MNV, and AiV without bacteria, respectively. Reductions in TuV, MNV, and AiV were 3.50, 1.88, and 0.61 log10 PFU/ml when associated with E. cloacae, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgements

This material is based upon work that is supported by the Arkansas Biosciences Institute with the Grant received by author Gibson (2015–2018). This work was also supported in part by the National Institute of Food and Agriculture (NIFA), U.S. Department of Agriculture (USDA), Hatch Act Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen E. Gibson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Almeida, G. & Gibson, K.E. Co-culture with Enterobacter cloacae does not Enhance Virus Resistance to Thermal and Chemical Treatments. Food Environ Virol 11, 238–246 (2019). https://doi.org/10.1007/s12560-019-09381-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-019-09381-5

Keywords

Navigation