Skip to main content
Log in

Mechanistic Understanding of High Flow Nasal Cannula Therapy and Pressure Support with an In Vitro Infant Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Despite the increased use of high flow nasal cannula therapy, little has been done to predict airway pressures for a full breath cycle. A 3-month-old infant in vitro model was developed, which included the entire upper airway and the first three bifurcations of the lungs. A breathing simulator was used to create a realistic breath pattern, and high flow was provided using a Vapotherm unit. Four cannulas of varying sizes were used to assess the effects of the inner diameter and nasal occlusion of the cannulas on airway pressures. At 8 L min−1, end expiratory pressures of 0.821–1.306 cm H2O and 0.828–1.133 cm H2O were produced in the nasopharynx and trachea, respectively. Correlations were developed to predict full breath cycle airway pressures, based on the gas flow rate delivered, cannula dimensions, as well as the breathing flow rate, for the nasopharynx and trachea. Pearson correlation coefficients for the nasopharynx and trachea correlations were 0.991 and 0.992, respectively. The developed correlations could be used to determine the flow rate necessary for a cannula to produce pressures similar to CPAP settings. The proposed correlations accurately predict the regional airway pressure up to and including 7 cm H2O of support for the entire breath cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bailes, S. A., K. S. Firestone, D. K. Dunn, N. L. McNinch, M. F. Brown, and T. A. Volsko. Evaluating the effect of flow and interface type on pressures delivered with bubble CPAP in a simulated model. Respir. Care 61:333–339, 2016.

    Article  Google Scholar 

  2. Beggs, S., Z. H. Wong, S. Kaul, K. J. Ogden, and J. A. E. Walters. High-flow nasal cannula therapy for infants with bronchiolitis. Cochrane Database Syst. Rev. 2014. https://doi.org/10.1002/14651858.cd009609.pub2.

    Article  PubMed  Google Scholar 

  3. Bergeson, P. S., and J. C. Shaw. Are infants really obligatory nasal breathers? Clin. Pediatr. (Phila) 40:567–569, 2001.

    Article  CAS  Google Scholar 

  4. Chang, G. Y., C. A. Cox, and T. H. Shaffer. Nasal cannula, CPAP, and high-flow nasal cannula: effect of flow on temperature, humidity, pressure, and resistance. Biomed. Instrum. Technol. 45:69–74, 2011.

    Article  Google Scholar 

  5. Chilton, H. W., and J. G. Brooks. Pharyngeal pressures in nasal CPAP. J. Pediatr. 94:808–810, 1979.

    Article  CAS  Google Scholar 

  6. De Paoli, A. G., R. Lau, P. G. Davis, and C. J. Morley. Pharyngeal pressure in preterm infants receiving nasal continuous positive airway pressure. Arch. Dis. Child. Fetal Neonatal Ed. 90:79–81, 2005.

    Article  Google Scholar 

  7. Dewan, N. A., and C. W. Bell. Effect of low flow and high flow oxygen delivery on exercise tolerance and sensation of dyspnea: a study comparing the transtracheal catheter and nasal prongs. Chest 105:1061–1065, 1994.

    Article  CAS  Google Scholar 

  8. Dysart, K., T. L. Miller, M. R. Wolfson, and T. H. Shaffer. Research in high flow therapy: mechanisms of action. Respir. Med. 103:1400–1405, 2009.

    Article  Google Scholar 

  9. Fleming, S., M. Thompson, R. Stevens, C. Heneghan, A. Plüddemann, I. MacOnochie, L. Tarassenko, and D. Mant. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: a systematic review of observational studies. Lancet 377:1011–1018, 2011.

    Article  Google Scholar 

  10. Fontanari, P., H. Burnet, M. C. Zattara-Hartmann, and Y. Jammes. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals. J. Appl. Physiol. 81:1739–1743, 1996.

    Article  CAS  Google Scholar 

  11. Franklin, D., F. E. Babl, L. J. Schlapbach, E. Oakley, S. Craig, J. Neutze, J. Furyk, J. F. Fraser, M. Jones, J. A. Whitty, S. R. Dalziel, and A. Schibler. A randomized trial of high-flow oxygen therapy in infants with bronchiolitis. N. Engl. J. Med. 378:1121–1131, 2018.

    Article  CAS  Google Scholar 

  12. Gardner, M., W. Longest, and L. Golshahi. Understanding high-flow nasal cannula noninvasively with an in vitro breathing infant lung model. Crit. Care Med. 44:237, 2016.

    Google Scholar 

  13. Goldman, S. L., E. M. McCann, B. W. Lloyd, and G. Yup. Inspiratory time and pulmonary function in mechanically ventilated babies with chronic lung disease. Pediatr. Pulmonol. 11:198–201, 1991.

    Article  CAS  Google Scholar 

  14. Greenspan, J. S., M. R. Wolfson, and T. H. Shaffer. Airway responsiveness to low inspired gas temperature in preterm neonates. J. Pediatr. 118:443–445, 1991.

    Article  CAS  Google Scholar 

  15. ICRP. Human Respiratory Tract Model for Radiological Protection. ICRP Publication 66 Ann. ICRP, 1994.

  16. Iyer, N. P., and R. Chatburn. Evaluation of a nasal cannula in noninvasive ventilation using a lung simulator. Respir. Care 60:508–512, 2015.

    Article  Google Scholar 

  17. Lee, J. H., K. J. Rehder, L. Williford, I. M. Cheifetz, and D. A. Turner. Use of high flow nasal cannula in critically ill infants, children, and adults: a critical review of the literature. Intensive Care Med. 39:247–257, 2013.

    Article  Google Scholar 

  18. Leone, T. A. A survey of delivery room resuscitation practices in the United States. Pediatrics 117:e164–e175, 2006.

    Article  Google Scholar 

  19. Levy, S. D., J. W. Alladina, K. A. Hibbert, R. S. Harris, E. K. Bajwa, and D. R. Hess. High-flow oxygen therapy and other inhaled therapies in intensive care units. Lancet 387:1867–1878, 2016.

    Article  Google Scholar 

  20. Mayfield, S., H. Jauncey-Cooke, J. L. Hough, A. Schibler, K. Gibbons, and F. Bogossian. High-flow nasal cannula therapy for respiratory support in children (Review). Cochrane Database Syst. Rev. 2014. https://doi.org/10.1002/14651858.CD009850.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Milési, C., J. Baleine, S. Matecki, S. Durand, C. Combes, A. R. B. Novais, and G. Combonie. Is treatment with a high flow nasal cannula effective in acute viral bronchiolitis? A physiologic study. Intensive Care Med. 39:1088–1094, 2013.

    Article  Google Scholar 

  22. Milési, C., M. Boubal, A. Jacquot, J. Baleine, S. Durand, M. P. Odena, and G. Cambonie. High-flow nasal cannula: recommendations for daily practice in pediatrics. Ann. Intensive Care 4:1–7, 2014.

    Article  Google Scholar 

  23. Möller, W., G. Celik, S. Feng, P. Bartenstein, G. Meyer, O. Eickelberg, O. Schmid, and S. Tatkov. Nasal high flow clears anatomical dead space in upper airway models. J. Appl. Physiol. 118:1525–1532, 2015.

    Article  Google Scholar 

  24. Moore, C. P., I. M. Katz, G. Caillibotte, W. H. Finlay, and A. R. Martin. Correlation of high flow nasal cannula outlet area with gas clearance and pressure in adult upper airway replicas. Clin. Biomech. 66:66–73, 2019.

    Article  Google Scholar 

  25. Moore, C. P., I. M. Katz, M. Pichelin, G. Caillibotte, W. H. Finlay, and A. R. Martin. High flow nasal cannula: influence of gas type and flow rate on airway pressure and CO2 clearance in adult nasal airway replicas. Clin. Biomech. 65:73–80, 2019.

    Article  CAS  Google Scholar 

  26. Morley, C. J., A. J. Thornton, M. A. Fowler, T. J. Cole, and P. H. Hewson. Respiratory rate and severity of illness in babies under 6 months old. Arch. Dis. Child. 65:834–837, 1990.

    Article  CAS  Google Scholar 

  27. Mortola, J. P., J. T. Fisher, B. Smith, G. Fox, and S. Weeks. Dynamics of breathing in infants. J. Appl. Physiol. 52:1209–1215, 1982.

    Article  CAS  Google Scholar 

  28. Nielsen, K. R., L. E. Ellington, A. J. Gray, L. I. Stanberry, L. S. Smith, and R. M. DiBlasi. Effect of high-flow nasal cannula on expiratory pressure and ventilation in infant, pediatric, and adult models. Respir. Care 2017. https://doi.org/10.4187/respcare.05728.

    Article  PubMed  Google Scholar 

  29. Shepard, J. W., and C. D. Burger. Nasal and oral flow-volume loops in normal subjects and patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 142:1288–1293, 1990.

    Article  Google Scholar 

  30. Sivieri, E. M., J. S. Gerdes, and S. Abbasi. Effect of HFNC flow rate, cannula size, and nares diameter on generated airway pressures: an in vitro study. Pediatr. Pulmonol. 48:506–514, 2013.

    Article  Google Scholar 

  31. Spence, K. L., D. Murphy, C. Kilian, R. McGonigle, and R. A. Kilani. High-flow nasal cannula as a device to provide continuous positive airway pressure in infants. J. Perinatol. 27:772–775, 2007.

    Article  CAS  Google Scholar 

  32. Volsko, T. A., K. Fedor, J. Amadei, and R. L. Chatburn. High flow through a nasal cannula and CPAP effect in a simulated infant model. Respir. Care 56:1893–1900, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

The Radiology Center in VCU Main Hospital is acknowledged for providing the CT images. Amber Clark and Paul Clark are acknowledged for printing the in vitro model and the preliminary experimental setup. Dr. Golshahi acknowledges the funding received from VCU as startup and Presidential Research Quest Fund (PeRQ). Dr. Gardner acknowledges discussions with her Fellowship Committee.

Conflict of interest

The authors have no conflicts of interest to declare related to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Golshahi.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilkins, J.V., Gardner, M.T., Walenga, R. et al. Mechanistic Understanding of High Flow Nasal Cannula Therapy and Pressure Support with an In Vitro Infant Model. Ann Biomed Eng 48, 624–633 (2020). https://doi.org/10.1007/s10439-019-02377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02377-z

Keywords

Navigation