Skip to main content
Log in

The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

High-arsenic (As) groundwater has been widely found throughout the world. The source of groundwater would determine spatial distribution of groundwater As. In order to trace the source of high-As deep groundwater (DGW, depths > 50 m), groundwater, sediments, and local bedrock samples were taken to investigate chemical and isotopic compositions in the Hetao Basin, China. Results showed that 87Sr/86Sr in DGW gradually decreased with the increase in As concentrations along the approximate flow path. In recharge-oxic zone (Zone I), DGW was mainly recharged by fissure water, influenced mostly by weathering of phyllite bedrock and meta-basalt. In groundwater flow-moderate reducing zone (Zone II), DGW was mainly related to incongruent dissolution of feldspar. However, in groundwater flow-reducing zone (Zone III), DGW was partly recharged from shallow groundwater (SGW) with depths < 50 m. The mixing contributions of SGW to DGW in Zone III mostly exceeded 80% during groundwater irrigation season. In Zone I, DGW As concentrations were mostly lower than 50 μg/L due to oxic conditions. In Zone II, the weakly alkaline pH and the decreasing Ca/Na resulting from incongruent dissolution of feldspar caused As desorption, which was the major contribution to As mobilization (As mostly > 200 μg/L). In Zone III, the recharge of SGW introduced labile organic matter to support reduction of Fe(III) oxyhydroxides/oxides and predominantly led to As release into groundwater (As > 300 μg/L). This study has provided insights into the source of high-As DGW and the effect of SGW mixing on As mobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity of groundwater in parts of the Bengal basin in India and Bangladesh: the role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology,39, 1127–1137.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., Van Der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology,36, 3096–3103.

    Article  CAS  Google Scholar 

  • Barbieri, M. (2019). Isotopes in hydrology and hydrogeology. Water,11(2), 291. https://doi.org/10.3390/w11020291.

    Article  CAS  Google Scholar 

  • Berner, E. K., & Berner, R. A. (1987). The global water cycle: Geochemistry and environment. Englewood Cliffs, NJ: Prentice-Hall Inc.

    Google Scholar 

  • BGS & DPHE. (2001). Arsenic contamination of groundwater in Bangladesh. In Kinniburgh, D. G., & Smedley, P. L. (Eds.), BGS Technical Report. WC/00/19.

  • Boschetti, T., Awaleh, M. O., & Barbieri, M. (2018). Waters from the Djiboutian Afar: A review of strontium isotopic composition and a comparison with Ethiopian waters and Red Sea brines. Water,10(11), 1700. https://doi.org/10.3390/w10111700.

    Article  Google Scholar 

  • Capo, R. C., Stewart, B. W., & Chadwick, O. A. (1998). Strontium isotopes as tracers of ecosystem processes: Theory and methods. Geoderma,82, 197–225.

    Article  CAS  Google Scholar 

  • Cartwright, I., Weaver, T., Cendón, D. I., & Swane, I. (2010). Environmental isotopes as indicators of inter-aquifer mixing, Wimmera region, Murray Basin, Southeast Australia. Chemical Geology,277(3–4), 214–226.

    Article  CAS  Google Scholar 

  • Cartwright, I., Weaver, T., & Petrides, B. (2007). Controls on 87Sr/86Sr ratios of groundwater in silicate-dominated aquifers: SE Murray Basin, Australia. Chemical Geology,246(1–2), 107–123.

    Article  CAS  Google Scholar 

  • Chowdhury, T. R., Basu, G. K., Mandal, B. K., Biswas, B. K., Samanta, G., Chowdhury, U. K., et al. (1999). Arsenic poisoning in the Ganges delta. Nature,401, 545–546.

    Article  CAS  Google Scholar 

  • Christensen, J. N., Dafflon, B., Shiel, A. E., Tokunaga, T. K., Wan, J. M., Faybishenko, B., et al. (2018). Using strontium isotopes to evaluate the spatial variation of groundwater recharge. Science of the Total Environment,637–638, 672–685.

    Article  CAS  Google Scholar 

  • Craig, H. (1961). Isotopic variations with meteoric water. Science,133(1461), 1702–1703.

    Article  CAS  Google Scholar 

  • Do, S. H., Jo, Y. H., Park, J. Y., & Hong, S. H. (2014). As3+ removal by Ca–Mn–Fe3O4 with and without H2O2: Effects of calcium oxide in Ca–Mn–Fe3O4. Journal of Hazardous Materials,280, 322–330.

    Article  CAS  Google Scholar 

  • Farina, F., & Stevens, G. (2011). Source controlled 87Sr/86Sr isotope variability in granitic magmas: The inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos,122(3–4), 189–200.

    Article  CAS  Google Scholar 

  • Faure, G. (1986). Principles of isotope geology (2nd ed., p. 589). New York: Wiley.

    Google Scholar 

  • Guo, H. M., Jia, Y. F., Wanty, R. B., Jiang, Y. X., Zhao, W. G., Xiu, W., et al. (2016a). Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls. Science of the Total Environment,541, 1172–1190.

    Article  CAS  Google Scholar 

  • Guo, H. M., Li, X. M., Xiu, W., He, W., Cao, Y. S., Zhang, D., et al. (2019). Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R. China. Journal of Hydrology,57, 448–459.

    Article  CAS  Google Scholar 

  • Guo, H. M., Liu, C., Lu, H., Wanty, R., Wang, J., & Zhou, Y. Z. (2013). Pathways of coupled arsenic and iron cycling in high arsenic groundwater of the Hetao basin, Inner Mongolia, China: An iron isotope approach. Geochimica et Cosmochimica Acta,112, 130–145.

    Article  CAS  Google Scholar 

  • Guo, H. M., Liu, Z. Y., Ding, S. S., Hao, C. B., Xiu, W., & Hou, W. G. (2015). Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the Hetao basin, Inner Mongolia. Environmental Pollution,203, 50–59.

    Article  CAS  Google Scholar 

  • Guo, H. M., Yang, S. Z., Tang, X. H., Li, Y., & Shen, Z. L. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment,393(1), 131–144.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, B., Li, Y., Berner, Z., Tang, X. H., Norra, S., et al. (2011). Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution,159, 876–883.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhang, D., Ni, P., Cao, Y. S., Li, F. L., Jia, Y. F., et al. (2017). On the scalability of hydrogeochemical factors controlling arsenic mobility in three major inland basins of P. R. China. Applied Geochemistry,77, 15–23.

    Article  CAS  Google Scholar 

  • Guo, H. M., Zhou, Y. Z., Jia, Y. F., Tang, X. H., Li, X. F., Shen, M. M., et al. (2016b). Sulfur cycling-related biogeochemical processes of arsenic mobilization in the Western Hetao Basin, China: Evidence from multiple isotope approaches. Environmental Science and Technology,50(23), 12650–12659.

    Article  CAS  Google Scholar 

  • Hagedorn, B., & Whittier, R. B. (2015). Solute sources and water mixing in a flashy mountainous stream (Pahsimeroi River, U.S. Rocky Mountains): Implications on chemical weathering rate and groundwater–surface water interaction. Chemical Geology,391, 123–137.

    Article  CAS  Google Scholar 

  • Han, D., Liang, X., Jin, M. G., Currell, M. J., Han, Y., & Song, X. (2009). Hydrogeochemical indicators of groundwater flow systems in the Yangwu River alluvial fan, Xinzhou Basin, Shanxi, China. Environmental Management,44(2), 243–255.

    Article  Google Scholar 

  • Harrington, G. A., & Herczeg, A. L. (2003). The importance of silicate weathering of a sedimentary aquifer in arid Central Australia indicated by very high 87Sr/86Sr ratios. Chemical Geology,199(3–4), 281–292.

    Article  CAS  Google Scholar 

  • Hosono, T., Nakano, T., Igeta, A., Tayasu, I., Tanaka, T., & Yachi, S. (2007). Impact of fertilizer on a small watershed of Lake Biwa: Use of sulfur and strontium isotopes in environmental diagnosis. Science of the Total Environment,384(1–3), 342–354.

    Article  CAS  Google Scholar 

  • Inner Mongolia Institute of Hydrogeology. (1982). Hydrogeological setting and remediation: Approaches of soil salinity in the Hetao Basin, Inner Mongolia. Scientific Report. (in Chinese).

  • Jia, Y. F., Guo, H. M., Jiang, Y. X., Wu, Y., & Zhou, Y. Z. (2014). Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia. Journal of Hydrology,518, 410–420.

    Article  CAS  Google Scholar 

  • Jin, L., Mukasa, S. B., Hamilton, S. K., & Walter, L. M. (2012). Impacts of glacial/interglacial cycles on continental rock weathering inferred using Sr/Ca and 87Sr/86Sr ratios in Michigan watersheds. Chemical Geology,300–301, 97–108.

    Article  CAS  Google Scholar 

  • Khaska, M., La Salle, C. L. G., Sassine, L., Cary, L., Brufuier, O., & Verdoux, P. (2018). Arsenic and metallic trace elements cycling in the surface water–groundwater–soil continuum down-gradient from a reclaimed mine area: Isotopic imprints. Journal of Hydrology,558, 341–355.

    Article  CAS  Google Scholar 

  • Khaska, M., La Salle, C. L. G., Verdoux, P., & Boutin, R. (2015). Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints. Journal of Contaminant Hydrology,177–178, 122–135.

    Article  CAS  Google Scholar 

  • Lengfelder, F., Grupe, G., Stallauer, A., Huth, R., & Sollner, F. (2018). Modelling strontium isotopes in past biospheres—Assessment of bioavailable 87Sr/86Sr ratios in local archaeological vertebrates based on environmental signatures. Science of the Total Environment,648, 236–252.

    Article  CAS  Google Scholar 

  • Li, J. X., Wang, Y. X., Xie, X. J., & DePaolo, D. J. (2016). Effects of water-sediment interaction and irrigation practices on iodine enrichment in shallow groundwater. Journal of Hydrology,543, 293–304.

    Article  CAS  Google Scholar 

  • Li, M. D., Wang, Y. X., Li, P., Deng, Y. M., & Xie, X. J. (2014a). δ34S and δ18O of dissolved sulfate as biotic tracer of biogeochemical influences on arsenic mobilization in groundwater in the Hetao Plain, Inner Mongolia, China. Ecotoxicology,23(10), 1958–1968.

    Article  CAS  Google Scholar 

  • Li, Y., Guo, H. M., & Hao, C. B. (2014b). Arsenic release from shallow aquifers of the Hetao basin, Inner Mongolia: Evidence from bacterial community in aquifer sediments and groundwater. Ecotoxicology,23(10), 1900–1914.

    Article  CAS  Google Scholar 

  • Liu, N. J., Deng, Y. M., & Wu, Y. (2017). Arsenic, iron and organic matter in quaternary aquifer sediments from western Hetao Basin, Inner Mongolia. Journal of Earth Science,28(3), 473–483.

    Article  CAS  Google Scholar 

  • Ma, B., Jin, M. G., Liang, X., & Li, J. (2017). Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators. Hydrogeology Journal. https://doi.org/10.1007/s10040-017-1659-0.

    Article  Google Scholar 

  • McArthur, J. M., Ravenscroft, P., & Sracek, O. (2011). Aquifer arsenic source. Nature Geoscience,4, 655–656.

    Article  CAS  Google Scholar 

  • McNutt, R. H. (2000). Strontium isotopes. In P. G. Cook & A. L. Herczec (Eds.), Environmental tracers in subsurface hydrology (pp. 233–260). Boston: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Migaszewski, Z. M., Gałuszka, A., & Dołęgowska, S. (2018). Arsenic in the Wiśniówka acid mine drainage area (south-central Poland)—Mineralogy, hydrogeochemistry, remediation. Chemical Geology,493, 491–503.

    Article  CAS  Google Scholar 

  • Moore, L. J., Murphy, T. J., Barnes, I. L., & Paulsen, P. J. (1982). Absolute isotopic abundance ratios and atomic weight of a reference sample of strontium. Journal of Research of National Bureau of Standards,87(1), 1–8.

    Article  CAS  Google Scholar 

  • Polizzotto, M. L., Harvey, C. F., Li, G., Badruzzman, B., Ali, A., Newville, M., et al. (2006). Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology,228, 97–111.

    Article  CAS  Google Scholar 

  • Postma, D., Pham, T. K. T., Sø, H. U., Hoang, V. H., Vi, M. L., Nguyen, T. T., et al. (2016). A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam. Geochimica et Cosmochimica Acta,195, 277–292.

    Article  CAS  Google Scholar 

  • Qiu, G. H., Gao, T. Y., Hong, J., Luo, Y., Liu, L. H., Tan, W. F., et al. (2018). Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. Geochimica et Cosmochimica Acta,228, 205–219.

    Article  CAS  Google Scholar 

  • Qu, S., Wang, G. C., Shi, Z. M., Xu, Q. Y., Guo, Y. Y., Ma, L., et al. (2018). Using stable isotopes (δD, δ18O, δ34S and 87Sr/86Sr) to identify sources of water in abandoned mines in the Fengfeng coal mining district, northern China. Hydrogeology Journal,26(5), 1443–1453.

    Article  CAS  Google Scholar 

  • Rasul, S., Munir, A., Hossain, Z., Khan, A., Alauddin, M., & Hussam, A. (2002). Electrochemical measurement and speciation of inorganic arsenic in groundwater of Bangladesh. Talanta,58, 33–43.

    Article  CAS  Google Scholar 

  • Ravenscroft, P. (2007). Predicting the global distribution of natural arsenic contamination of groundwater. Symposium on arsenic: The geography of a global problem. London: Rayal Geographical Society.

    Google Scholar 

  • Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. Calderon (Eds.), Arsenic exposure and health effects IV (pp. 53–78). Oxford: Elsevier Science Ltd.

    Google Scholar 

  • Richards, L. A., Magnone, D., Boyce, A. J., Casaueva-Mcarenco, M. J., van Dongen, B. E., Ballentine, C. J., et al. (2018). Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. Journal of Hydrology,557, 321–334.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research,42, 4215–4232.

    Article  CAS  Google Scholar 

  • Santoni, S., Huneau, F., Garel, E., Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., et al. (2016). Strontium isotopes as tracers of water-rocks interactions, mixing processes and residence time indicator of groundwater within the granite-carbonate coastal aquifer of Bonifacio (Corsica, France). Science of the Total Environment,573, 233–246.

    Article  CAS  Google Scholar 

  • Shand, P., Darbyshire, D. P. F., Gooddy, D., & Haria, A. H. (2007). 87Sr/86Sr as an indicator of flowpaths and weathering rates in the Plynlimon experimental catchments, Wales, UK. Chemical Geology,236(3–4), 247–265.

    Article  CAS  Google Scholar 

  • Shand, P., Darbyshire, D. P. F., Love, A. J., & Edmunds, W. M. (2009). Sr isotopes in natural waters: Applications to source characterisation and water–rock interaction in contrasting landscapes. Applied Geochemistry,24(4), 574–586.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry,17, 517–568.

    Article  CAS  Google Scholar 

  • Su, X. S., Wu, C. Y., Dong, W. H., & Hou, G. C. (2011). Strontium isotope evolution mechanism of the Cretaceous groundwater in Ordos Desert Plateau. Journal of Chengdu University of Technology (Science & Technology Edition),38(3), 348–358. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Tanboonchuy, V., Grisdanurak, N., & Liao, C. H. (2012). Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design. Journal of Hazardous Materials,205–206, 40–46.

    Article  CAS  Google Scholar 

  • Uliana, M. M., Banner, J. L., & Sharp, J. M., Jr. (2007). Regional groundwater flow paths in Trans-Pecos, Texas inferred from oxygen, hydrogen, and strontium isotopes. Journal of Hydrology,334(3–4), 334–346.

    Article  CAS  Google Scholar 

  • van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., et al. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resource Research,39, 1140–1155.

    Google Scholar 

  • Vinson, D. S., McIntosh, J. C., Dwyer, G. S., & Vengosh, A. (2011). Arsenic and other oxyanion-forming trace elements in an alluvial basin aquifer: Evaluating sources and mobilization by isotopic tracers (Sr, B, S, O, H, Ra). Applied Geochemistry,26(8), 1364–1376.

    Article  CAS  Google Scholar 

  • Wang, Y., Pi, K., Fendorf, S., Deng, Y., & Xie, X. (2019). Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems. Earth-Science Reviews,89, 79–98.

    Article  CAS  Google Scholar 

  • Wang, Y. X., Guo, Q. H., Su, C. L., & Ma, T. (2006). Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. Journal of Hydrology,328(3–4), 592–603.

    Article  CAS  Google Scholar 

  • Wang, Y. X., Shvartsev, S. L., & Su, C. L. (2009). Genesis of arsenic/fluoride-enriched soda water: A case study at Datong, northern China. Applied Geochemistry,24, 641–649.

    Article  CAS  Google Scholar 

  • Warner, N., Lgourna, Z., Bouchaou, L., Boutaleb, S., Tagma, T., Hsaissoune, M., et al. (2013). Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Applied Geochemistry,34, 140–151.

    Article  CAS  Google Scholar 

  • Wen, B., Zhou, J. W., Zhou, A. G., Liu, C. F., & Xie, L. N. (2016). Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures. Science of the Total Environment,569–570, 114–122.

    Article  CAS  Google Scholar 

  • Winkel, L. H. E., Pham, T. K. T., Vi, M. L., Stengel, C., Amini, M., Nguyen, T. H., et al. (2011). Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proceedings of the National Academy of Sciences USA,108, 1246–1251.

    Article  CAS  Google Scholar 

  • Xie, X. J., Wang, Y. X., Ellis, A., Su, C. L., Li, J. X., Li, M. D., et al. (2013). Delineation of groundwater flow paths using hydrochemical and strontium isotope composition: A case study in high arsenic aquifer systems of the Datong basin, northern China. Journal of Hydrology,476, 87–96.

    Article  CAS  Google Scholar 

  • Yang, Y. C., Shen, Z. L., Weng, D. G., Hou, G. C., Zhao, Z. D., Wang, D., et al. (2009). Oxygen and hydrogen isotopes of waters in the Ordos basin, China: Implications for recharge of groundwater in the north of Cretaseous groundwater basin. Acta Geologica Sinica,83, 103–113.

    Article  CAS  Google Scholar 

  • Yu, Q., Wang, Y. X., Xie, X. J., Currell, M., Pi, K. F., & Yu, M. (2015). Effects of short-term flooding on arsenic transport in groundwater system: A case study of the Datong Basin. Journal of Geochemical Exploration, 158, 1–9.

    Article  CAS  Google Scholar 

  • Yuan, R. Q., Liu, G. Q., Zhang, X. L., & Gao, H. W. (2006). Features of hydrogen and oxygen isotopes in groundwater of the shallow part of Yellow river delta. Journal of ShanDong University (Natural science),41, 138–143. (in Chinese with English abstract).

    CAS  Google Scholar 

  • Yuan, R. X., Guo, H. M., Zhang, D., Li, Y., Zhang, Y. L., & Cao, W. G. (2017). Soluble components of sediments and their relation with dissolved arsenic in aquifers from the Hetao Basin, Inner Mongolia. Journal of Soils Sediments,17(12), 2899–2911.

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, H., Liu, R., & Qu, J. (2009). Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. Journal of Hazardous Materials,168(2–3), 820–825.

    Article  CAS  Google Scholar 

  • Zhang, Z., Guo, H. M., Zhao, W. G., Liu, S., Cao, Y. S., & Jia, Y. F. (2018). Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China. Hydrogeology Journal,26(5), 1499–1512.

    Article  CAS  Google Scholar 

  • Zhao, Q., Su, X. S., Kang, B., Zhang, Y., Wu, X. C., & Liu, M. Y. (2017). A hydrogeochemistry and multi-isotope (Sr, O, H, and C) study of groundwater salinity origin and hydrogeochemcial processes in the shallow confined aquifer of northern Yangtze River downstream coastal plain, China. Applied Geochemistry,86, 49–58.

    Article  CAS  Google Scholar 

  • Zhou, Y. Z., Guo, H. M., Zhang, Z., Lu, H., Jia, Y. F., & Cao, Y. S. (2018). Characteristics and implication of stable carbon isotope in high arsenic groundwater systems in the northwest Hetao Basin, Inner Mongolia, China. Journal of Asian Earth Sciences,163, 70–79.

    Article  Google Scholar 

  • Zielinski, M., Dopieralska, J., Belka, Z., Walczak, A., Siepak, M., & Jakubowicz, M. (2016). Sr isotope tracing of multiple water sources in a complex river system, Notec River, central Poland. Science of the Total Environment,548–549, 307–316.

    Article  CAS  Google Scholar 

  • Zobrist, J., Dowdle, P. R., Davis, J. A., & Oremland, R. S. (2000). Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environmental Science and Technology,34, 4747–4753.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Natural Science Foundation of China (Grant Nos. 41825017, 41672225 and 41502259), the Fundamental Research Funds for the Central Universities (Grant Nos. 2652017165 and 2652017193), and the Fok Ying-Tung Education Foundation, China (Grant No. 131017). Constructive comments provided by editors and two anonymous reviewers are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaming Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1776 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Guo, H., Lu, H. et al. The provenance of deep groundwater and its relation to arsenic distribution in the northwestern Hetao Basin, Inner Mongolia. Environ Geochem Health 42, 1429–1451 (2020). https://doi.org/10.1007/s10653-019-00433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00433-0

Keywords

Navigation