Skip to main content

Advertisement

Log in

Chronic Mild Gut Inflammation Accelerates Brain Neuropathology and Motor Dysfunction in α-Synuclein Mutant Mice

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Emerging findings suggest that Parkinson’s disease (PD) pathology (α-synuclein accumulation) and neuronal dysfunction may occur first in peripheral neurons of the autonomic nervous system including the enteric branches of the vagus nerve. The risk of PD increases greatly in people over the age of 65, a period of life in which chronic inflammation is common in many organ systems including the gut. Here we report that chronic mild focal intestinal inflammation accelerates the age of disease onset in α-synuclein mutant PD mice. Wild-type and PD mice treated with 0.5% dextran sodium sulfate (DSS) in their drinking water for 12 weeks beginning at 3 months of age exhibited histological and biochemical features of mild gut inflammation. The age of onset of motor dysfunction, evaluated using a rotarod test, gait analysis, and grip strength measurements, was significantly earlier in DSS-treated PD mice compared to control PD mice. Levels of the dopaminergic neuron marker tyrosine hydroxylase in the striatum and numbers of dopaminergic neurons in the substantia nigra were reduced in PD mice with gut inflammation. Levels of total and phosphorylated α-synuclein were elevated in enteric and brain neurons in DSS-treated PD mice, suggesting that mild gut inflammation accelerates α-synuclein pathology. Markers of inflammation in the colon and brain, but not in the blood, were elevated in DSS-treated PD mice, consistent with retrograde transneuronal propagation of α-synuclein pathology and neuroinflammation from the gut to the brain. Our findings suggest that interventions that reduce gut inflammation may prove beneficial in the prevention and treatment of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams-Carr, K. L., Bestwick, J. P., Shribman, S., Lees, A., Schrag, A., & Noyce, A. J. (2016). Constipation preceding Parkinson’s disease: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery and Psychiatry, 87, 710–716.

    Article  PubMed  Google Scholar 

  • Allen Reish, H. E., & Standaert, D. G. (2015). Role of α-synuclein in inducing innate and adaptive immunity in Parkinson disease. Journal of Parkinson’s Disease, 5, 1–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Awerbuch, G. I., & Sandyk, R. (1994). Autonomic functions in the early stages of Parkinson’s disease. International Journal of Neuroscience, 74, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Bencsik, A., Muselli, L., Leboidre, M., Lakhdar, L., & Baron, T. (2014). Early and persistent expression of phosphorylated α-synuclein in the enteric nervous system of A53T mutant human α-synuclein transgenic mice. Journal of Neuropathology and Experimental Neurology, 73, 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  • Chandra, S., Gallardo, G., Fernández-Chacón, R., Schlüter, O. M., & Südhof, T. C. (2005). Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell, 123, 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D. Y., Liu, M., Hunter, R. L., Cass, W. A., Pandya, J. D., Sullivan, P. G., et al. (2009). Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE, 4(5), e5482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, C. Y., Koprich, J. B., Siddiqi, H., & Isacson, O. (2009). Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. Journal of Neuroscience, 29, 3365–3373.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, T. M., Ko, H. S., & Dawson, V. L. (2010). Genetic animal models of Parkinson’s disease. Neuron, 66, 646–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Tredici, K., & Braak, H. (2016). Review: Sporadic Parkinson’s disease: Development and distribution of α-synuclein pathology. Neuropathology and Applied Neurobiology, 42, 33–50.

    Article  CAS  PubMed  Google Scholar 

  • Del Tredici, K., Rüb, U., De Vos, R. A., Bohl, J. R., & Braak, H. (2002). Where does parkinson disease pathology begin in the brain? Journal of Neuropathology and Experimental Neurology, 61, 413–426.

    Article  PubMed  Google Scholar 

  • Devos, D., Lebouvier, T., Lardeux, B., Biraud, M., Rouaud, T., Pouclet, H., et al. (2013). Colonic inflammation in Parkinson’s disease. Neurobiology of Diseases, 50, 42–48.

    Article  CAS  Google Scholar 

  • Dias, V., Junn, E., & Mouradian, M. M. (2013). The role of oxidative stress in Parkinson’s disease. Journal of Parkinson’s Disease, 3, 461–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrand, A. Q., Helke, K. L., Gregory, R. A., Gooz, M., Hinson, V. K., & Boger, H. A. (2017). Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimulation, 10, 1045–1054.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, H. M., Zhang, F., Zhou, H., Kam, W., Wilson, B., & Hong, J. S. (2011). Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environmental Health Perspectives, 119, 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gazewood, J. D., Richards, D. R., & Clebak, K. (2013). Parkinson disease: An update. American Family Physician, 87, 267–273.

    PubMed  Google Scholar 

  • Griffioen, K. J., Rothman, S. M., Ladenheim, B., Wan, R., Vranis, N., Hutchison, E., et al. (2013). Dietary energy intake modifies brainstem autonomic dysfunction caused by mutant α-synuclein. Neurobiology of Aging, 34, 928–935.

    Article  CAS  PubMed  Google Scholar 

  • Hall, B., Mak, E., Cervenka, S., Aigbirhio, F. I., Rowe, J. B., & O’Brien, J. T. (2017). In vivo tau PET imaging in dementia: Pathophysiology, radiotracer quantification, and a systematic review of clinical findings. Ageing Research Reviews, 36, 50–63.

    Article  CAS  PubMed  Google Scholar 

  • Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W., & Isacson, O. (2012). α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiology of Diseases, 47, 258–267.

    Article  CAS  Google Scholar 

  • Hirsch, E. C., Vyas, S., & Hunot, S. (2012). Neuroinflammation in Parkinson’s disease. Parkinsonism and Related Disorders, 18(Suppl 1), S210–S212.

    Article  PubMed  Google Scholar 

  • Holmqvist, S., Chutna, O., Bousset, L., Aldrin-Kirk, P., Li, W., Björklund, T., et al. (2014). Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathologica, 128, 805–820.

    Article  PubMed  Google Scholar 

  • Houlden, H., & Singleton, A. B. (2012). The genetics and neuropathology of Parkinson’s disease. Acta Neuropathologica, 124, 325–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingelhoefer, L., & Reichmann, H. (2015). Pathogenesis of Parkinson disease–the gut-brain axis and environmental factors. Nature Reviews Neurology, 11, 625–636.

    Article  CAS  PubMed  Google Scholar 

  • Lai, S. W., Liao, K. F., Lin, C. L., & Sung, F. C. (2014). Irritable bowel syndrome correlates with increased risk of Parkinson’sdisease in Taiwan. European Journal of Epidemiology, 29, 57–62.

    Article  PubMed  Google Scholar 

  • Liu, B., Fang, F., Pedersen, N. L., Tillander, A., Ludvigsson, J. F., Ekbom, A., et al. (2017). Vagotomy and Parkinson disease: A Swedish register-based matched-cohort study. Neurology, 88, 1996–2002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism, 16, 706–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson, M. P., & Wan, R. (2005). Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. Journal of Nutritional Biochemistry, 16, 129–137.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, S. L., Xu, J., & Kochanek, K. D. (2012). Deaths: Preliminary data for 2010. CDC National Vital Statistics Reports, 60, 1–52.

    Google Scholar 

  • Noorian, A. R., Rha, J., Annerino, D. M., Bernhard, D., Taylor, G. M., & Greene, J. G. (2012). Alpha-synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiology of Diseases, 48, 9–19.

    Article  CAS  Google Scholar 

  • Oueslati, A. (2016). Implication of alpha-synuclein phosphorylation at S129 in synucleinopathies: What have we learned in the last decade? Journal of Parkinson’s Disease, 6, 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan-Montojo, F., Schwarz, M., Winkler, C., Arnhold, M., O’Sullivan, G. A., Pal, A., et al. (2012). Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Scientific Reports, 2, 898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, R. J., Walter, G. C., Wilder, S. L., Baronowsky, E. A., & Powley, T. L. (2008). Alpha-synuclein-immunopositive myenteric neurons and vagal preganglionic terminals: Autonomic pathway implicated in Parkinson’sdisease? Neuroscience, 153, 733–750.

    Article  CAS  PubMed  Google Scholar 

  • Pickrell, A. M., & Youle, R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 85, 257–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigent, A., Gonzales, J., Durand, T., Le Berre-Scoul, C., Rolli-Derkinderen, M., Neunlist, M., et al. (2018). Acute inflammation down-regulates alpha-synuclein expression in enteric neurons. Journal of Neurochemistry, 148(6), 746–760. https://doi.org/10.1111/jnc.14656.

    Article  CAS  Google Scholar 

  • Reichardt, F., Chassaing, B., Nezami, B. G., Li, G., Tabatabavakili, S., Mwangi, S., et al. (2017). Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and lipopolysaccharide-induced TLR4 signalling. Journal of Physiology, 595, 1831–1846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotermund, C., Truckenmüller, F. M., Schell, H., & Kahle, P. J. (2014). Diet-induced obesity accelerates the onset of terminal phenotypes in α-synuclein transgenic mice. Journal of Neurochemistry, 131, 848–858.

    Article  CAS  PubMed  Google Scholar 

  • Sampson, T. R., Debelius, J. W., Thron, T., Janssen, S., Shastri, G. G., Ilhan, Z. E., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 167, 1469–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savica, R., Rocca, W. A., & Ahlskog, J. E. (2010). When does Parkinson disease start? Archives of Neurology, 67, 798–801.

    Article  PubMed  Google Scholar 

  • Sconce, M. D., Churchill, M. J., Greene, R. E., & Meshul, C. K. (2015). Intervention with exercise restores motor deficits but not nigrostriatal loss in a progressive MPTP mouse model of Parkinson’s disease. Neuroscience, 299, 156–174.

    Article  CAS  PubMed  Google Scholar 

  • Stokholm, M. G., Danielsen, E. H., Hamilton-Dutoit, S. J., & Borghammer, P. (2016). Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Annals of Neurology, 79, 940–949.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, E., Horváth-Puhó, E., Thomsen, R. W., Djurhuus, J. C., Pedersen, L., Borghammer, P., et al. (2015). Vagotomy and subsequent risk of Parkinson’s disease. Annals of Neurology, 78, 522–529.

    Article  PubMed  Google Scholar 

  • Tansey, M. G., Frank-Cannon, T. C., McCoy, M. K., Lee, J. K., Martinez, T. N., McAlpine, F. E., et al. (2008). Neuroinflammation in Parkinson’s disease: Is there sufficient evidence for mechanism-based interventional therapy? Front Biosci, 13, 709–717.

    Article  CAS  PubMed  Google Scholar 

  • Travagli, R. A., & Anselmi, L. (2016). Vagal neurocircuitry and its influence on gastric motility. Nature Reviews Gastroenterology and Hepatology, 13, 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Ulusoy, A., Rusconi, R., Pérez-Revuelta, B. I., Musgrove, R. E., Helwig, M., Winzen-Reichert, B., et al. (2013). Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Molecular Medicine, 5, 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  • Villemagne, V. L. (2016). Amyloid imaging: Past, present and future perspectives. Ageing Research Reviews, 30, 95–106.

    Article  CAS  PubMed  Google Scholar 

  • Villumsen, M., Aznar, S., Pakkenberg, B., Jess, T., & Brudek, T. (2018). Inflammatory bowel disease increases the risk of Parkinson’s disease: A Danish nationwide cohort study 1977-2014. Gut, 68(1), 18–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jyoti M. Sen or Mark P. Mattson.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kishimoto, Y., Zhu, W., Hosoda, W. et al. Chronic Mild Gut Inflammation Accelerates Brain Neuropathology and Motor Dysfunction in α-Synuclein Mutant Mice. Neuromol Med 21, 239–249 (2019). https://doi.org/10.1007/s12017-019-08539-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-019-08539-5

Keywords

Navigation