Skip to main content
Log in

Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Although ecological flexibility has been well documented in fungi, it remains unclear how this flexibility can be exploited for pollutant degradation, especially in the Ascomycota phylum. In this work, we assess three mycostimulation amendments for their ability to induce degradation in Trichoderma harzanium, a model fungus previously isolated from a Superfund site contaminated with polycyclic aromatic hydrocarbons. The amendments used in the present study were selected based on the documented ecological roles of ascomycetes. Chitin was selected to simulate the parasitic ecological role while cellulose and wood were selected to mimic bulk soil and wood saprobic conditions, respectively. Each amendment was tested in liquid basal medium in 0.1 and 1% (w/v) suspensions. Both chitin and cellulose amendments were shown to promote anthracene degradation in T. harzanium with the 0.1% chitin amendment resulting in over 90% removal of anthracene. None of the targets monitored for gene expression were found to be upregulated suggesting alternate pathways may be used in T. harzanium. Overall, our data suggest that mycostimulation amendments can be improved by understanding the ecological roles of indigenous fungi. However, further research is needed to better estimate specific amendment requirements for a broader group of target fungi and follow up studies are needed to determine whether the trends observed herein translate to more realistic soil systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anastasi A, Tigini V, Varese GC (2013) The bioremediation potential of different ecophysiological groups of fungi. In: Goltapeh EM, Danesh YR, Varma A (eds) Fungi as bioremediators. Springer, Berlin, pp 29–49

    Chapter  Google Scholar 

  • Arnholt AT, Evans B (2017) Basic statistics and data analysis. CRAN

  • Askolin S et al (2006) Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei. Biomacromol 7(4):1295–1301

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1(1):4–12

    Article  Google Scholar 

  • Barbi F et al (2014) PCR primers to study the diversity of expressed fungal genes encoding lignocellulolytic enzymes in soils using high-throughput sequencing. PLoS ONE 9(12):e116264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Environ Sci Technol 28(2):78A–87A

    Article  PubMed  CAS  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66(3):1007–1019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54(6):751–758

    Article  PubMed  CAS  Google Scholar 

  • Carrard G et al (2000) Cellulose-binding domains promote hydrolysis of different sites on crystalline cellulose. Proc Natl Acad Sci 97(19):10342–10347

    Article  PubMed  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Chapter  Google Scholar 

  • Chemidlin Prévost-Bouré N et al (2011) Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6(9):e24166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crampon M et al (2014) Correlations between PAH bioavailability, degrading bacteria, and soil characteristics during PAH biodegradation in five diffusely contaminated dissimilar soils. Environ Sci Pollut Res 21(13):8133–8145

    CAS  Google Scholar 

  • Czaplicki LM et al (2016) A new perspective on sustainable soil remediation—case study suggests novel fungal genera could facilitate in situ biodegradation of hazardous contaminants. Remediat J 26(2):59–72

    Article  CAS  Google Scholar 

  • Di Giulio RT, Clark BW (2015) The Elizabeth river story: a case study in evolutionary toxicology. J Toxicol Environ Health B. 18(6):259–298

    Article  CAS  Google Scholar 

  • Dowson CG, Rayner ADM, Boddy L (1988) Foraging patterns of Phallus impudicus, Phanerochaete laevis and Steccherinum fimbriatum between discontinuous resource units in soil. FEMS Microbiol Lett 53(5):291–298

    Article  Google Scholar 

  • Druzhinina IS et al (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749

    Article  PubMed  CAS  Google Scholar 

  • Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337(1):1–9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Edwards IP, Upchurch RA, Zak DR (2008) Isolation of fungal cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl Environ Microbiol 74(11):3481–3489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis DE, Hadley PW (2009) Sustainable remediation white paper—integrating sustainable principles, practices, and metrics into remediation projects. Remediat J 19(3):5–114

    Article  Google Scholar 

  • Gadd GM (1994) Interactions of fungi with toxic metals. In: Powell K, Renwick A, Peberdy J (eds) The genus Aspergillus. Springer, New York, pp 361–374

    Chapter  Google Scholar 

  • Grigoriev IV et al (2012) The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res 40(D1):D26–D32

    Article  PubMed  CAS  Google Scholar 

  • Gunsch CK et al (2006) Quantification of homogentisate-1, 2-dioxygenase expression in a fungus degrading ethylbenzene. J Microbiol Methods 67(2):257–265

    Article  PubMed  CAS  Google Scholar 

  • Gunsch CK et al (2007) Relative gene expression quantification in a fungal gas-phase biofilter. Biotechnol Bioeng 98(1):101–111

    Article  PubMed  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  PubMed  CAS  Google Scholar 

  • Hellemans J et al (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang Y et al (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20

    Article  PubMed  CAS  Google Scholar 

  • Kanaly RA, Hur H-G (2006) Growth of Phanerochaete chrysosporium on diesel fuel hydrocarbons at neutral pH. Chemosphere 63(2):202–211

    Article  PubMed  CAS  Google Scholar 

  • Kohlmeier S et al (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39(12):4640–4646

    Article  PubMed  CAS  Google Scholar 

  • Krivobok S et al (1998) Biodegradation of Anthracene by soil fungi. Chemosphere 37(3):523–530

    Article  PubMed  CAS  Google Scholar 

  • Lade HS et al (2012) Enhanced biodegradation and detoxification of disperse azo dye Rubine GFL and textile industry effluent by defined fungal-bacterial consortium. Int Biodeterior Biodegrad 72:94–107

    Article  CAS  Google Scholar 

  • Launen LA, Pinto LJ, Moore MM (1999) Optimization of pyrene oxidation by Penicillium janthinellum using response-surface methodology. Appl Microbiol Biotechnol 51(4):510–515

    Article  PubMed  CAS  Google Scholar 

  • Leitao AL et al (2011) Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments. Microbiol Res 167(2):79–89

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242–W245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lienemann M et al (2009) Toward understanding of carbohydrate binding and substrate specificity of a glycosyl hydrolase 18 family (GH-18) chitinase from Trichoderma harzianum. Glycobiology 19(10):1116–1126

    Article  PubMed  CAS  Google Scholar 

  • Limon MC et al (2001) Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. FEMS Microbiol Lett 198(1):57–63

    Article  PubMed  CAS  Google Scholar 

  • Limon MC et al (2004) Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biotechnol 64(5):675–685

    Article  PubMed  CAS  Google Scholar 

  • Linder MB et al (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896

    Article  PubMed  CAS  Google Scholar 

  • Lombard V et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(Database issue):D490–D495

    Article  PubMed  CAS  Google Scholar 

  • Mach RL et al (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65(5):1858–1863

    PubMed  PubMed Central  CAS  Google Scholar 

  • Madden T (2013) The BLAST sequence analysis tool

  • Mancera-López ME et al (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation–bioaugmentation with filamentous fungi. Int Biodeterior Biodegrad 61(2):151–160

    Article  CAS  Google Scholar 

  • Miles PG, Chang S-T (1997) Mushroom biology: concise basics and current developments. World Scientific, Singapore

    Book  Google Scholar 

  • Mukherjee PK et al (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51(1):105–129

    Article  PubMed  CAS  Google Scholar 

  • Müncnerová D, Augustin J (1994) Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Biores Technol 48(2):97–106

    Article  Google Scholar 

  • Nordberg H et al (2014) The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res 42(Database issue):D26–D31

    Article  PubMed  CAS  Google Scholar 

  • Puglisi I et al (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506(2):325–330

    Article  PubMed  CAS  Google Scholar 

  • Rafin C, de Foucault B, Veignie E (2013) Exploring micromycetes biodiversity for screening benzo[a]pyrene degrading potential. Environ Sci Pollut Res Int 20(5):3280–3289

    Article  PubMed  CAS  Google Scholar 

  • Ritter GJ, Fleck LC (1924) Determination of cellulose in wood. Ind Eng Chem 16(2):147–148

    Article  CAS  Google Scholar 

  • Schamfuß S et al (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47(13):6908–6915

    Article  PubMed  CAS  Google Scholar 

  • Schnecker J et al (2016) Little effects on soil organic matter chemistry of density fractions after seven years of forest soil warming. Soil Biol Biochem 103:300–307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seidl V et al (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics. https://doi.org/10.1186/1471-2164-10-567

    Article  PubMed  PubMed Central  Google Scholar 

  • Spatafora JW et al (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5):1028–1046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takahashi T et al (2005) The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. Mol Microbiol 57(6):1780–1796

    Article  PubMed  CAS  Google Scholar 

  • Tornberg K, Olsson S (2002) Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol Ecol 40(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Tuisel H et al (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279(1):158–166

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2018) https://www.epa.gov/superfund

  • Vieira PM et al (2013a) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vieira PM et al (2013b) Identification of differentially expressed genes from Trichoderma harzianum during growth on cell wall of Fusarium solani as a tool for biotechnological application. BMC Genomics 14:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • von Lützow M et al (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39(9):2183–2207

    Article  CAS  Google Scholar 

  • Waghunde RR, Shelake RM, Sabalpara AN (2016) Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11(22):1952–1965

    Article  Google Scholar 

  • Warmink JA et al (2011) Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem 43(4):760–765

    Article  CAS  Google Scholar 

  • Wick LY et al (2006) Effect of fungal hyphae on the access of bacteria to phenanthrene in soil. Environ Sci Technol 41(2):500–505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this work was gratefully provided by the NIEHS-supported Duke University Superfund Research Center (NIEHS Grant P42-ES010356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia K. Gunsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaplicki, L.M., Dharia, M., Cooper, E.M. et al. Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation 29, 463–471 (2018). https://doi.org/10.1007/s10532-018-9843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-9843-z

Keywords

Navigation