Skip to main content
Log in

Design of microfluidic channels for magnetic separation of malaria-infected red blood cells

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study is motivated by the development of a blood cell filtration device for removal of malaria-infected, parasitized red blood cells (pRBCs). The blood was modeled as a multi-component fluid using the computational fluid dynamics discrete element method (CFD-DEM), wherein plasma was treated as a Newtonian fluid and the red blood cells (RBCs) were modeled as soft-sphere solid particles which move under the influence of drag, collisions with other RBCs, and a magnetic force. The CFD-DEM model was first validated by a comparison with experimental data from Han and Frazier (Lab Chip 6:265–273, 2006) involving a microfluidic magnetophoretic separator for paramagnetic deoxygenated blood cells. The computational model was then applied to a parametric study of a parallel-plate separator having hematocrit of 40 % with 10 % of the RBCs as pRBCs. Specifically, we investigated the hypothesis of introducing an upstream constriction to the channel to divert the magnetic cells within the near-wall layer where the magnetic force is greatest. Simulations compared the efficacy of various geometries upon the stratification efficiency of the pRBCs. For a channel with nominal height of 100 µm, the addition of an upstream constriction of 80 % improved the proportion of pRBCs retained adjacent to the magnetic wall (separation efficiency) by almost twofold, from 26 to 49 %. Further addition of a downstream diffuser reduced remixing and hence improved separation efficiency to 72 %. The constriction introduced a greater pressure drop (from 17 to 495 Pa), which should be considered when scaling up this design for a clinical-sized system. Overall, the advantages of this design include its ability to accommodate physiological hematocrit and high throughput, which is critical for clinical implementation as a blood-filtration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahn CH, Allen MG, Trimmer W et al (1996) A fully integrated micromachined magnetic particle separator. J Microelectromechanical Syst 5:151–158. doi:10.1109/84.536621

    Article  Google Scholar 

  • Bhakdi SC, Ottinger A, Somsri S et al (2010) Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells. Malar J 9:38. doi:10.1186/1475-2875-9-38

    Article  Google Scholar 

  • Carter V, Cable HC, Underhill BA et al (2003) Density gradient columns and magnetic isolation. Malar J 6:1–6

    Google Scholar 

  • Chen H, Bockenfeld D, Rempfer D et al (2007) Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids. Phys Med Biol 52:5205–5218. doi:10.1088/0031-9155/52/17/007

    Article  Google Scholar 

  • Chikov V, Kuznetsov A, Shapiro A (1993) Single cell magnetophoresis and its diagnostic value. J Magn Magn Mater 122(122):367–370

    Article  Google Scholar 

  • Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  • Dean D, Hemmer J, Vertegel A, Laberge M (2010) Frictional behavior of individual vascular smooth muscle cells assessed by lateral force microscopy. Materials (Basel) 3:4668–4680. doi:10.3390/ma3094668

    Article  Google Scholar 

  • Dulińska I, Targosz M, Strojny W et al (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66:1–11. doi:10.1016/j.jbbm.2005.11.003

    Article  Google Scholar 

  • Earhart CM, Wilson RJ, White RL et al (2009) Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation. J Magn Magn Mater 321:1436–1439. doi:10.1016/j.jmmm.2009.02.062

    Article  Google Scholar 

  • Fairlamb AH, Paul F, Warhurst DC (1984) A simple magnetic method for the purification of malarial pigment. Mol Biochem Parasitol 12:307–312

    Article  Google Scholar 

  • Fenech M, Garcia D, Meiselman HJ, Cloutier G (2009) A particle dynamic model of red blood cell aggregation kinetics. Ann Biomed Eng 37:2299–2309. doi:10.1007/s10439-009-9775-1

    Article  Google Scholar 

  • Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4:614–618. doi:10.1039/b409366f

    Article  Google Scholar 

  • Furlani EP (2007) Magnetophoretic separation of blood cells at the microscale. J Phys D Appl Phys 40:1313–1319. doi:10.1088/0022-3727/40/5/001

    Article  Google Scholar 

  • Gandini A, Weinstein R, Sawh RP, Parks D (2013) Blood purification method and apparatus for the treatment of malaria, U.S. Patent No. 8,556,843. U.S. Patent and Trademark Office, Washington, DC

  • Gerber R (1984) Magnetic filtration of ultra-fine particles. Magn IEEE Trans 20:1159–1164

    Article  Google Scholar 

  • Hackett S, Hamzah J, Davis TME, St Pierre TG (2009) Magnetic susceptibility of iron in malaria-infected red blood cells. Biochim Biophys Acta (BBA)-Molecular Basis Dis 1792:93–99

    Article  Google Scholar 

  • Hahn YK, Jin Z, Kang JH et al (2007) Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient. Anal Chem 79:2214–2220. doi:10.1021/ac061522l

    Article  Google Scholar 

  • Han K-H, Frazier AB (2004) Continuous magnetophoretic separation of blood cells in microdevice format. J Appl Phys 96:5797–5802

    Article  Google Scholar 

  • Han K-H, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6:265–273

    Article  Google Scholar 

  • Hayes MA, Polson NA, Phayre AN, Garcia AA (2001) Flow-Based Microimmunoassay. Anal Chem 73:5896–5902. doi:10.1021/ac0104680

    Article  Google Scholar 

  • Hoomans BPB, Kuipers JAM, Briels WJ, van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51:99–118. doi:10.1016/0009-2509(95)00271-5

    Article  Google Scholar 

  • Iliescu C, Xu G, Barbarini E et al (2009) Microfluidic device for continuous magnetophoretic separation of white blood cells. Microsyst Technol 15:1157–1162. doi:10.1007/s00542-008-0718-9

    Article  Google Scholar 

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85:5093–5095. doi:10.1063/1.1823015

    Article  Google Scholar 

  • Johnson G, Rajagopal KR, Massoudi M (1990) A review of interaction mechanisms in fluid-solid flows. USDOE Pittsburgh Energy Technology Center, PA (USA)

    Book  Google Scholar 

  • Kang JH, Krause S, Tobin H et al (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175. doi:10.1039/c2lc40072c

    Article  Google Scholar 

  • Karl S, David M, Moore L et al (2008) Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission. Malar J 7:66. doi:10.1186/1475-2875-7-66

    Article  Google Scholar 

  • Karl S, Davis TME, St-Pierre TG (2009) A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR. Malar J 8:98. doi:10.1186/1475-2875-8-98

    Article  Google Scholar 

  • Kim KS, Park J-K (2005) Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab Chip 5:657–664. doi:10.1039/b502225h

    Article  Google Scholar 

  • Kim J, Massoudi M, Antaki JF, Gandini A (2012) Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl Math Comput 218:6841–6850

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar RK, Lykke AWJ (1984) Cell separation: a review. Pathology 16:53–62

    Article  Google Scholar 

  • Lien K-Y, Lin J-L, Liu C-Y et al (2007) Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lab Chip 7:868–875

    Article  Google Scholar 

  • Link JM, Cuypers LA, Deen NG, Kuipers JAM (2005) Flow regimes in a spout-fluid bed: a combined experimental and simulation study. Chem Eng Sci 60:3425–3442. doi:10.1016/j.ces.2005.01.027

    Article  Google Scholar 

  • Melville D, Paul F, Roath S (1975) Direct magnetic separation of red cells from whole blood. Nat 255:706

  • Moore LR, Fujioka H, Williams PS et al (2006) Hemoglobin degradation in malaria-infected erythrocytes determined from live cell magnetophoresis. FASEB J 20:747–749

    Google Scholar 

  • Nalbandian RM, Sammons DW, Manley M et al (1995) A Molecular-based Magnet Test for Malaria. Am J Clin Pathol 103:57–64

    Google Scholar 

  • Nam J, Huang H, Lim H et al (2013) Magnetic separation of malaria-infected red blood cells in various developmental stages. Anal Chem 85:7316–7323. doi:10.1021/ac4012057

    Article  Google Scholar 

  • OpenCFD (2011) OpenFOAM Programmer’s Guide Version 2.1.0

  • Oshima S, Sankai Y (2009) Improvement of the accuracy in the optical hematocrit measurement by optimizing mean optical path length. Artif Organs 33:749–756

    Article  Google Scholar 

  • Owen CS (1978) High gradient magnetic separation of erythrocytes. Biophys J 22:171–178. doi:10.1016/S0006-3495(78)85482-4

    Article  Google Scholar 

  • Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307:237–244

    Article  Google Scholar 

  • Paul F, Roath S, Melville D et al (1981) Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet 318:70–71

    Article  Google Scholar 

  • Ribaut C, Berry A, Chevalley S et al (2008) Concentration and purification by magnetic separation of the erythrocytic stages of all human Plasmodium species. Malar J 7:45. doi:10.1186/1475-2875-7-45

    Article  Google Scholar 

  • Rusche H, Issa RI (2000) The Effect of Void age on the Drag Force on Particles, Droplets and Bubbles in Dispersed Two-Phase Flow

  • Su J, Gu Z, Xu XY (2011) Discrete element simulation of particle flow in arbitrarily complex geometries. Chem Eng Sci 66:6069–6088. doi:10.1016/j.ces.2011.08.025

    Article  Google Scholar 

  • Takayasu M, Duske N, Ash SR, Friedlaender FJ (1982) HGMS studies of blood cell behavior in plasma. IEEE Trans 18:1520–1522

    Google Scholar 

  • Trang DTX, Huy NT, Kariu T et al (2004) One-step concentration of malarial parasite-infected red blood cells and removal of contaminating white blood cells. Malar J 3:7. doi:10.1186/1475-2875-3-7

    Article  Google Scholar 

  • Tsuji Y, Tanaka T, Ishida T (1992) Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 71:239–250. doi:10.1016/0032-5910(92)88030-L

    Article  Google Scholar 

  • van der Hoef MA, Ye M, van Sint Annaland M et al (2006) Computational fluid dynamics. Elsevier, USA

    Google Scholar 

  • Verbruggen B, Tóth T, Cornaglia M et al (2015) Separation of magnetic microparticles in segmented flow using asymmetric splitting regimes. Microfluid Nanofluidics 18:91–102

    Article  Google Scholar 

  • WHO (2013) Malaria: Report By the Secretariat. In: Sixty-sixth World Health Assembly. p A66/21

  • Wu X, Wu H, Hu Y (2011) Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid Nanofluidics 11:11–24

    Article  Google Scholar 

  • Wu W-T, Aubry N, Massoudi M (2014a) On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles. Int J Non Linear Mech 59:76–82

    Article  Google Scholar 

  • Wu W-T, Aubry N, Massoudi M et al (2014b) A numerical study of blood flow using mixture theory. Int J Eng Sci 76:56–72

    Article  MathSciNet  Google Scholar 

  • Wu W-T, Yang F, Antaki JF et al (2015) Study of blood flow in several benchmark micro-channels using a two-fluid approach. Int J Eng Sci 95:49–59

    Article  Google Scholar 

  • Xia N, Hunt TP, Mayers BT et al (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8:299–308. doi:10.1007/s10544-006-0033-0

    Article  Google Scholar 

  • Yin X, Thomas T, Zhang J (2013) Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Microvasc Res 89:47–56

    Article  Google Scholar 

  • Yung CW, Fiering J, Mueller AJ, Ingber DE (2009) Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177. doi:10.1039/b816986a

    Article  Google Scholar 

  • Zborowski M, Sun L, Moore LR et al (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194:224–230

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR et al (2003) Red blood cell magnetophoresis. Biophys J 84:2638–2645

    Article  Google Scholar 

  • Zhang J, Johnson PC, Popel AS (2008) Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech 41:47–55

    Article  Google Scholar 

  • Zhu T, Lichlyter DJ, Haidekker MA, Mao L (2011) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluidics 10:1233–1245

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH Grant 1 R01 HL089456.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Antaki.

Appendix: Symbol and explanation

Appendix: Symbol and explanation

Symbol

Explanation

Symbol

Explanation

ρ p

Density of plasma

\(\varvec{\omega}\)

Angular velocity

\(\varvec{v}_{p}\)

Velocity of plasma

\(\tilde{\varvec{F}}_{contact}^{m,n}\)

Tangential component of the contact force

ρ p0

Density of the plasma in the reference configuration

\(\tilde{k}\)

Tangential spring stiffness

ε

Volume fraction of plasma

\(\tilde{\eta }\)

Tangential damping coefficient

\(\varvec{T}_{p}\)

Constitutive equation of plasma

μ f

Friction coefficient

p

Pressure of the mixture

\(\tilde{\varvec{v}}_{r}^{m,n}\)

Relative tangential velocity

λ p

First coefficients of viscosity of the pure plasma

\(\tilde{\delta }\)

Tangential displacement

μ p

Second coefficients of viscosity of the pure plasma

\(\varvec{t}^{m,n}\)

Tangential unit vector

\(\varvec{D}_{p}\)

Symmetric part of the velocity gradient

\(\hat{\delta }_{0}\)

Tangential displacement in the previous time step

\(\varvec{F}_{pr}\)

Interaction forces

\(\varvec{n}_{0}^{m.n}\)

Normal direction in the previous time step

\(\varvec{b}_{p}\)

Body force

\(\varvec{e}_{{z^{'} }}\)

Unit vectors in the z

m r

Mass of a RBC

\(\varvec{e}_{{y^{'} }}\)

Unit vectors in the y

\(\varvec{x}_{r}\)

Instantial space position of RBCs

μ w

Magnetic permeability of the ferromagnetic wire

\(\varvec{F}_{\text{contact}}\)

Force of collision with other RBCs or boundaries

μ 0

Magnetic permeability of free space

\(\varvec{F}_{pr}\)

Interaction force with continuous phase

M s

Saturation magnetization field of the rectangular wire

\(\varvec{F}_{ext}\)

External force field

χ p

Magnetic susceptibility of the plasma

\(\varvec{F}_{\text{contact}}^{m,n}\)

The normal component of the contact force

χ rbc

Magnetic susceptibility of RBCs

\(\hat{k}\)

Normal “spring” stiffness

V rbc

Volume of the RBCs

\(\hat{\eta }\)

Normal damping coefficient

a

Nominal radius of the wire

δ

A (fictitious) overlap between two RBCs

H 0

The applied external magnetic field

R

Radius of a RBC

H c

Constriction height

\(\varvec{n}\)

Normal unit vector between two RBCs

L c

Constriction length

\(\varvec{v}_{r}^{m,n}\)

Relative velocity

L d

Diffuser length

\(\hat{\varvec{v}}_{r}^{m,n}\)

Normal relative velocity

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WT., Martin, A.B., Gandini, A. et al. Design of microfluidic channels for magnetic separation of malaria-infected red blood cells. Microfluid Nanofluid 20, 41 (2016). https://doi.org/10.1007/s10404-016-1707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1707-4

Keywords

Navigation