Skip to main content
Log in

A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The evolution of plant vascular tissue is tightly linked to the evolution of specialised cell walls. Mutations in the QUASIMODO2 (QUA2) gene from Arabidopsis thaliana were previously shown to result in cell adhesion defects due to reduced levels of the cell wall component homogalacturonic acid. In this study, we provide additional information about the role of QUA2 and its closest paralogues, QUASIMODO2 LIKE1 (QUL1) and QUL2. Within the extensive QUA2 family, our phylogenetic analysis shows that these three genes form a clade that evolved with vascular plants. Consistent with a possible role of this clade in vasculature development, QUA2 is highly expressed in the vascular tissue of embryos and inflorescence stems and overexpression of QUA2 resulted in temperature-sensitive xylem collapse. Moreover, in-depth characterisation of qua2 qul1 qul2 triple mutant and 35S::QUA2 overexpression plants revealed contrasting temperature-dependent stem development with dramatic effects on stem width. Taken together, our results suggest that the QUA2-specific clade contributed to the evolution of vasculature and illustrate the important role that modification of cell wall composition plays in the adaptation to changing environmental conditions, including changes in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of bestfit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Bouton S, Leboeuf E, Mouille G, Leydecker MT, Talbotec J, Granier F, Lahaye M, Hofte H, Truong HN (2002) Quasimodo1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590

    Article  CAS  PubMed  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Res (in press)

  • Carpita NC, Gibeaut DM (1993) Structural models of primary-cell walls in flowering plants—consistency of molecular-structure with the physical-properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Ehrhardt DW, Griffitts JS, Somerville CR (2000) Random GFP : cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci USA 97:3718–3723

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    Article  CAS  PubMed  Google Scholar 

  • Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED in shaping lateral organs. Development 131:1101–1110

    Article  CAS  PubMed  Google Scholar 

  • Driouich A, Faye L, Staehelin LA (1993) The plant golgi-apparatus - a factory for complex polysaccharides and glycoproteins. Trends Biochem Sci 18:210–214

    Article  CAS  PubMed  Google Scholar 

  • Durand C, Vicre-Gibouin M, Follet-Gueye ML, Duponchel L, Moreau M, Lerouge P, Driouich A (2009) The organization pattern of root border-like cells of arabidopsis is dependent on cell wall homogalacturonan. Plant Physiol 150:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    CAS  PubMed  Google Scholar 

  • Finkelstein RR (1994) Mutations at two new Arabidopsis ABA response loci are similar to the abi3 mutations. Plant J 5:765–771

    Article  Google Scholar 

  • Finkelstein RR, Wang ML, Lynch TJ, Rao S, Goodman HM (1998) The arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10:1043–1054. doi:10.1105/tpc.10.6.1043

    Google Scholar 

  • Friedman WE, Cook ME (2000) The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data. Phil Trans Royal Soc London Series B-Biol Sci 355:857–868

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  CAS  PubMed  Google Scholar 

  • Karssen CM, Brinkhorstvanderswan DLC, Breekland AE, Koornneef M (1983) Induction of dormancy during seed development by endogenous abscisic-acid - studies on abscisic-acid deficient genotypes of arabidopsis-thaliana (L) heynh. Planta 157:158–165

    Article  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Knox JP (2008) Revealing the structural and functional diversity of plant cell walls. Curr Opin Plant Biol 11:308–313

    Article  CAS  PubMed  Google Scholar 

  • Krupkova E, Immerzeel P, Pauly M, Schmulling T (2007) The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J 50:735–750

    Article  CAS  PubMed  Google Scholar 

  • Langdale JA (2008) Evolution of developmental mechanisms in plants. Curr Opin Genet Dev 18:368–373

    Article  CAS  PubMed  Google Scholar 

  • Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556

    Article  Google Scholar 

  • Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hematy K, McCartney L, Truong HN, Gaudon V, Thibault JF, Marchant A, Hofte H (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614

    Article  CAS  PubMed  Google Scholar 

  • Muller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: Abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877

    Article  PubMed  Google Scholar 

  • Nothnagel AL, Nothnagel EA (2007) Primary cell wall structure in the evolution of land plants. J Integr Plant Biol 49:1271–1278

    Article  Google Scholar 

  • Orfila C, Sorensen SO, Harholt J, Geshi N, Crombie H, Truong HN, Reid JSG, Knox JP, Scheller HV (2005) QUASIMODO1 is expressed in vascular tissue of Arabidopsis thaliana inflorescence stems, and affects homogalacturonan and xylan biosynthesis. Planta 222:613–622

    Article  CAS  PubMed  Google Scholar 

  • Pena MJ, Zhong RQ, Zhou GK, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye ZH (2007) Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  CAS  PubMed  Google Scholar 

  • Persson S, Caffall KH, Freshour G, Hilley MT, Bauer S, Poindexter P, Hahn MG, Mohnen D, Somerville C (2007) The Arabidopsis irregular xylem8 mutant is deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity. Plant Cell 19:237–255

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 164(1):165–174

    Article  CAS  Google Scholar 

  • Ralet MC, Crepeau MJ, Lefebvre J, Mouille G, Hofte H, Thibault JF (2008) Reduced number of homogalacturonan domains in pectins of an Arabidopsis mutant enhances the flexibility of the polymer. Biomacromolecules 9:1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Raven JA (1993) The evolution of vascular plants in relation to quantitative functioning of dead water-conducting cells and stomata. Biol Rev Cambridge Phil Soc 68:337–363

    Article  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud P-F, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin-I T, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S-I, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu S-H, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008) The physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60(13):3615–3635

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Chinnappa CC, Voesenek L, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of stellaria longipes. Plant Physiol 148:1557–1569

    Article  CAS  PubMed  Google Scholar 

  • Sibout R, Plantegenet S, Hardtke CS (2008) Flowering as a condition for xylem expansion in Arabidopsis hypocotyl and root. Curr Biol 18:458–463

    Article  CAS  PubMed  Google Scholar 

  • Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2:755–767

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant-cell walls. Science 306:2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Szyjanowicz PMJ, McKinnon I, Taylor NG, Gardiner J, Jarvis MC, Turner SR (2004) The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J 37:730–740

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Sieburth LE (2003) Vascular patterning In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    Article  CAS  PubMed  Google Scholar 

  • Tuskan GAS, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi S, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Nicolas Arnaud, Paul Derbyshire, Thomas Girin, Karim Sorefan, Penelope Sparrow, Pauline Stephenson and Tom Wood for critically reading the manuscript and providing useful comments. We are also grateful to Liam Dolan for suggestions and discussions, to Gregory Mouille for providing qua2-1 and qua2-2 seeds, to Chrystelle Asseman and Negin Agange for assistance with the germination assay and to Philip Martin for statistical advice. This work was supported by the Biotechnology and Biological Sciences Research Council (Core Strategic Grant to the John Innes Centre), JIC Foundation and by a Marie Curie Fellowship on the Early Stage Training Programme MEST-CT-2005-019727 to S. F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Østergaard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, S., Pires, N. & Østergaard, L. A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes. Plant Mol Biol 73, 605–615 (2010). https://doi.org/10.1007/s11103-010-9640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-010-9640-5

Keywords

Navigation