Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Genome-wide scan for visceral leishmaniasis susceptibility genes in Brazil

Abstract

A genome-wide scan was conducted for visceral leishmaniasis (VL) in Brazil. Initially, 405 markers were typed in 22 multicase pedigrees (28 nuclear families; 174 individuals; 66 affected). Non-parametric multipoint analysis detected nine chromosomal regions with provisional evidence (logarithm of the odds (LOD) scores 0.95–1.66; 0.003<P<0.018) for linkage. To confirm linkage, 132 individuals (43 affected) from 19 independently ascertained families were genotyped across these regions. Three regions (6q27, 7q11.22 and 17q11.2–q21.3) retained evidence (LOD scores 1.08, 1.34, 1.14; P=0.013, 0.007, 0.011) for linkage. To determine which genes contribute to linkage at 17q11.2–q21.3, 80 single nucleotide polymorphisms were genotyped in 98 nuclear families with 183 affected individuals. Family-based association test analysis indicated associations at two chemokine genes, CCL1 and CCL16, that lie 1.6 Mb apart, show some extended linkage disequilibrium with each other, but each lie within different clusters of candidate CCL genes. Multiple genes may therefore contribute to the linkage peak for VL at 17q12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. De Beer P, Harith AE, van Grootheest M, Winkler A . Outbreak of kala-azar in the Sudan. Lancet 1990; 335: 224.

    Article  CAS  PubMed  Google Scholar 

  2. Perea WA, Moren A, Ancelle T, Sondorp E . Epidemic of visceral leishmaniasis in Southern Sudan. Lancet 1989; ii: 1222–1223.

    Article  Google Scholar 

  3. Zijlstra EE, El Hassan AM, Ismael A, Ghalib HW . Endemic kala-azar in Eastern Sudan, a longitudinal study on the incidence of clinical and subclinical infection and post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 1994; 51: 826–836.

    Article  CAS  PubMed  Google Scholar 

  4. Ibrahim ME, Lambson B, Yousif AO, Deifalla NS, Alnaiem DA, Ismail A et al. Kala-azar in a high transmission focus: an ethnic and geographic dimension. Am J Trop Med Hyg 1999; 61: 941–944.

    Article  CAS  PubMed  Google Scholar 

  5. Cabello PH, Lima AM, Azevedo ES, Kriger H . Familial aggregation of Leishmnaia chagasi infection in northeastern Brazil. Am J Trop Med Hyg 1995; 52: 364–365.

    Article  CAS  PubMed  Google Scholar 

  6. Peacock CS, Collins A, Shaw MA, Silveira F, Costa J, Coste CH et al. Genetic epidemiology of visceral leishmaniasis in northeastern Brazil. Genet Epidemiol 2001; 20: 383–396.

    Article  CAS  PubMed  Google Scholar 

  7. Ho M, Siongok TK, Lyerly WH, Smith DH . Prevalence and disease spectrum in a new focus of visceral leishmaniasis in Kenya. Trans R Soc Trop Med Hyg 1982; 76: 741–746.

    Article  CAS  PubMed  Google Scholar 

  8. Sacks DL, Lal SL, Shrivastava SN, Blackwell JM, Neva FA . An analysis of T cell responsiveness in Indian kala-azar. J Immunol 1987; 138: 908–913.

    CAS  PubMed  Google Scholar 

  9. Davies CR, Llanos-Cuentas EA, Pyke SD, Dye C . Cutaneous leishmaniasis in the Peruvian Andes: an epidemiological study of infection and immunity. Epidemiol Infect 1995; 114: 297–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bucheton B, Abel L, El-Safi S, Kheir MM, Pavek S, Lemainque A et al. A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 2003; 73: 1052–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miller EN, Fadl M, Mohamed HS, El Zein A, Jamieson SE, Cordell HJ et al. Y chromosome lineage- and village-specific genes on chromosomes 1p22 and 6q27 that control visceral leishmaniasis in The Sudan 2006 (submitted).

  12. Blackwell JM, Black GF, Peacock CS, Miller EN, Sibthorpe D, Gnananandha D et al. Immunogenetics of leishmanial and mycobacterial infections: The Belem Family Study. Philos Trans R Soc London B 1997; 352: 1331–1345.

    Article  CAS  Google Scholar 

  13. Jamieson SE, Miller EN, Black GF, Peacock CS, Cordell HJ, Howson JMM et al. Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians. Genes Immun 2004; 5: 46–57.

    Article  CAS  PubMed  Google Scholar 

  14. Miller EN, Jamieson SE, Joberty C, Fakiola M, Hudson D, Peacock CS et al. Genome-wide scans for leprosy and tuberculosis in Brazilians. Genes Immun 2004; 5: 63–67.

    Article  CAS  PubMed  Google Scholar 

  15. Horvath S, Xu X, Laird NM . The family based association test method: strategies for studying general genotype–phenotype associations. Eur J Hum Genet 2001; 9: 301–306.

    Article  CAS  PubMed  Google Scholar 

  16. Sironi M, Martinez FO, D’Ambrosio D, Gattorno M, Polentarutti N, Locati M et al. Differential regulation of chemokine production by Fc{gamma} receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, type 2). J Leukoc Biol 2006; 80: 342–349.

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez NE, Chang HK, Wilson ME . Novel program of macrophage gene expression induced by phagocytosis of Leishmania chagasi. Infect Immun 2004; 72: 2111–2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kemp K, Kemp M, Kharazmi A, Ismail A, Kurtzhals JA, Hviid L et al. Leishmania-specific T cells expressing interferon-gamma (IFN-gamma) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin Exp Immunol 1999; 116: 500–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA et al. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest 1993; 91: 1644–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Musso T, Cappello P, Stornello S, Ravarino D, Caorsi C, Otero K et al. IL-10 enhances CCL2 release and chemotaxis induced by CCL16 in human monocytes. Int J Immunopathol Pharmacol 2005; 18: 339–349.

    Article  CAS  PubMed  Google Scholar 

  21. Schutyser E, Struyf S, Van Damme J . The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 2003; 14: 409–426.

    Article  CAS  PubMed  Google Scholar 

  22. Gantt KR, Schultz-Cherry S, Rodriguez N, Jeronimo SM, Nascimento ET, Goldman TL et al. Activation of TGF-beta by Leishmania chagasi: importance for parasite survival in macrophages. J Immunol 2003; 170: 2613–2620.

    Article  CAS  PubMed  Google Scholar 

  23. Milano S, Di Bella G, D’Agostino P, Barbera C, Caruso R, La Rosa M et al. IL-15 in human visceral leishmaniasis caused by Leishmania infantum. Clin Exp Immunol 2002; 127: 360–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA . Instruction of distinct CD4T helper cell fates by different notch ligands on antigen-presenting cells. Cell 2004; 117: 515–526.

    Article  CAS  PubMed  Google Scholar 

  25. Murray HW, Delph-Etienne S . Roles of endogenous gamma interferon and macrophage microbicidal mechanisms in host response to chemotherapy in experimental visceral leishmaniasis. Infect Immun 2000; 68: 288–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peacock CS, Sanjeevi CB, Shaw MA, Collins A, Campbell RD, March R et al. Genetic analysis of multicase families of visceral leishmaniasis in northeastern Brazil: no major role for class II or class III regions of HLA. Genes Immun 2002; 3: 350–358.

    Article  CAS  PubMed  Google Scholar 

  27. Jeronimo SM, Teixeira MJ, Sousa A, Thielking P, Pearson RD, Evans TG . Natural history of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: long-term follow-up. Clin Infect Dis 2000; 30: 608–609.

    Article  CAS  PubMed  Google Scholar 

  28. Jeronimo SM, Duggal P, Braz RF, Cheng C, Monteiro GR, Nascimento ET et al. An emerging peri-urban pattern of infection with Leishmania chagasi, the protozoan causing visceral leishmaniasis in northeast Brazil. Scand J Infect Dis 2004; 36: 443–449.

    Article  PubMed  Google Scholar 

  29. Karplus TM, Jeronimo SM, Chang H, Helms BK, Burns TL, Murray JC et al. Association between the tumor necrosis factor locus and the clinical outcome of Leishmania chagasi infection. Infect Immun 2002; 70: 6919–6925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braz RF, Nascimento ET, Martins DR, Wilson ME, Pearson RD, Reed SG et al. The sensitivity and specificity of Leishmania chagasi recombinant K39 antigen in the diagnosis of American visceral leishmaniasis and in differentiating active from subclinical infection. Am J Trop Med Hyg 2002; 67: 344–348.

    Article  PubMed  Google Scholar 

  31. Holmans P, Clayton D . Efficiency of typing unaffected relatives in an affected sib-pair linkage study with single locus and multiple tightly-linked markers. Am J Hum Genet 1995; 37: 1221–1232.

    Google Scholar 

  32. Spielman RS, McGinnis RE, Ewens WJ . Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Knapp M . A note on power approximations for the transmission/disequilibrium test. Am J Hum Genet 1999; 64: 1177–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kong A, Cox NJ . Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gudbjartsson DF, Jonasson K, Frigge ML, Kong A . Allegro, a new computer program for multipoint linkage analysis. Nat Genet 2000; 25: 12–13.

    Article  CAS  PubMed  Google Scholar 

  36. Hedrick PW . Gametic disequilibrium measures: proceed with caution. Genetics 1987; 117: 331–341.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Wellcome Trust and NIH (NIH/AI30639 to SMJ and Dr Edgar Carvalho). We thank the families from northeastern Brazil for their contribution to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Blackwell.

Additional information

Electronic Database Information

1. WHO sites for leishmaniasis prevalence including Brazil http://www.who.int/leishmaniasis/en/ and http://www.who.int/leishmaniasis/burden/en/

2. ABI products https://products.appliedbiosystems.com/ab/en/US/adirect/ab

3. Primer3 software (http://frodo.wi.mit.edu/)

4. Stata v8.2 http://www.stata.com/

5. Cambridge Institute for Medical Research – David Clayton software http://www-gene.cimr.cam.ac.uk/clayton/software/

6. FBAT http://www.biostat.harvard.edu/~fbat/default.html

7. HapMap Project Site http://www.hapmap.org/

Supplementary Information accompanies the paper on Genes and Immunity website (http://www.nature.com/gene)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, S., Miller, E., Peacock, C. et al. Genome-wide scan for visceral leishmaniasis susceptibility genes in Brazil. Genes Immun 8, 84–90 (2007). https://doi.org/10.1038/sj.gene.6364357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gene.6364357

Keywords

This article is cited by

Search

Quick links