Skip to main content
Log in

Extending inferences from a randomized trial to a target population

  • COMMENTARY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Weiss NS. Generalizing from the results of randomized studies of treatment: Can non-randomized studies be of help? Eur J Epidemiol 2019. https://doi.org/10.1007/s10654-019-00516-3.

    Article  PubMed  Google Scholar 

  2. Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: the ACTG 320 trial. Am J Epidemiol. 2010;172(1):107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stuart EA, Cole SR, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability of results from randomized trials. J R Stat Soc Ser A. 2011;174(2):369–86.

    Article  Google Scholar 

  4. Tipton E. Improving generalizations from experiments using propensity score subclassification: assumptions, properties, and contexts. J Educ Behav Stat. 2013;38(3):239–66.

    Article  Google Scholar 

  5. O’Muircheartaigh C, Hedges LV. Generalizing from unrepresentative experiments: a stratified propensity score approach. J R Stat Soc Ser C. 2014;63(2):195–210.

    Article  Google Scholar 

  6. Hartman E, Grieve R, Ramsahai R, Sekhon JS. From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects. J R Stat Soc Ser A. 2015;178(3):757–78.

    Article  Google Scholar 

  7. Dahabreh IJ, Robertson SE, Tchetgen EJT, Stuart EA, Hernán MA. Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals. Biometrics. 2018;10:1–12. https://doi.org/10.1111/biom.13009.

    Article  Google Scholar 

  8. Buchanan AL, Hudgens MG, Cole SR, et al. Generalizing evidence from randomized trials using inverse probability of sampling weights. J R Stat Soc Ser A Stat Soc. 2018;181(4):1193–209.

    Article  PubMed  Google Scholar 

  9. Zhang Z, Nie L, Soon G, Hu Z. New methods for treatment effect calibration, with applications to non-inferiority trials. Biometrics. 2016;72(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rudolph KE, van der Laan MJ. Robust estimation of encouragement design intervention effects transported across sites. J R Stat Soc Ser B. 2017;79(5):1509–25.

    Article  Google Scholar 

  11. Westreich D, Edwards JK, Lesko CR, Stuart E, Cole SR. Transportability of trial results using inverse odds of sampling weights. Am J Epidemiol. 2017;186(8):1010–4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dahabreh IJ, Robertson SE, Stuart EA, Hernán MA. Transporting inferences from a randomized trial to a new target population. arXiv preprint arXiv:1805.00550. 2018.

  13. Chan W. Partially identified treatment effects for generalizability. J. Res. Educ. Effect. 2017;10(3):646–69.

    Google Scholar 

  14. Dahabreh IJ, Robins JM, Haneuse SJ, Hernán MA. Generalizing causal inferences from randomized trials: counterfactual and graphical identification. 2019 (forthcoming).

  15. Hernán MA. Discussion of “Perils and potentials of self-selected entry to epidemiological studies and surveys” by N Keiding and TA Louis. J R Stat Soc Ser A Stat Soc. 2016;179(2):346–7.

    Article  Google Scholar 

  16. Heckman JJ. Randomization and social policy evaluation. Cambridge: National Bureau of Economic Research; 1991.

    Book  Google Scholar 

  17. Lesko CR, Buchanan AL, Westreich D, Edwards JK, Hudgens MG, Cole SR. Generalizing study results: a potential outcomes perspective. Epidemiol. 2017;28(4):553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lu H, Cole SR, Hall HI, et al. Generalizing the per-protocol treatment effect: the case of ACTG A5095. Clin Trials. 2019;16(1):52–62. https://doi.org/10.1177/1740774518806311.

    Article  PubMed  Google Scholar 

  19. Dahabreh IJ, Hernán MA, Robertson SE, Buchanan A, Steingrimsson JA. Generalizing trial findings in nested trial designs with sub-sampling of non-randomized individuals. arXiv preprint arXiv:1902.06080. 2019.

  20. Dahabreh IJ, Haneuse SJPA, Robins JM, Robertson SE, Buchanan AL, Stuart EA, et al. Study designs for extending causal inferences from a randomized trial to a target population. 2019. arXiv preprint arXiv:1905.07764.

  21. Kern HL, Stuart EA, Hill J, Green DP. Assessing methods for generalizing experimental impact estimates to target populations. J Res Educ Effect. 2016;9(1):103–27.

    Google Scholar 

  22. Hernán MA, Robins JM. Causal inference. Boca Raton: Chapman & Hall/CRC; 2019, forthcoming.

    Google Scholar 

  23. Robins JM, Rotnitzky A, Scharfstein DO. Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. Statistical models in epidemiology, the environment, and clinical trials: Springer; 2000. p. 1–94.

  24. Nguyen TQ, Ebnesajjad C, Cole SR, Stuart EA. Sensitivity analysis for an unobserved moderator in RCT-to-target-population generalization of treatment effects. Ann Appl Stat. 2017;11(1):225–47.

    Article  Google Scholar 

  25. Nguyen TQ, Ackerman B, Schmid I, Cole SR, Stuart EA. Sensitivity analyses for effect modifiers not observed in the target population when generalizing treatment effects from a randomized controlled trial: assumptions, models, effect scales, data scenarios, and implementation details. PLoS ONE. 2018;13(12):e0208795. https://doi.org/10.1371/journal.pone.0208795.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dahabreh IJ, Robins JM, Haneuse SJ, et al. Sensitivity analysis using bias functions for studies extending inferences from a randomized trial to a target population. arXiv preprint arXiv:1905.10684. 2019.

  27. Hernán MA, Robins JM. Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol. 2016;183(8):758–64. https://doi.org/10.1093/aje/kwv254.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Toh S, Hernán MA. Causal inference from longitudinal studies with baseline randomization. Int J Biostat. 2008. https://doi.org/10.2202/1557-4679.1117.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by Patient-Centered Outcomes Research Institute (PCORI) Methods Research Award ME-1502-27794 (Dahabreh) and National Institutes of Health (NIH) Grant R37 AI102634 (Hernán). Statements in this paper do not necessarily represent the views of the PCORI, its Board of Governors, the PCORI Methodology Committee, or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issa J. Dahabreh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahabreh, I.J., Hernán, M.A. Extending inferences from a randomized trial to a target population. Eur J Epidemiol 34, 719–722 (2019). https://doi.org/10.1007/s10654-019-00533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00533-2

Navigation